
Journal of the Chinese
Statistical Association
Vol. 47, (2009) 19–38

LOCAL POLYNOMIAL ESTIMATION OF HAZARD RATES

UNDER RANDOM CENSORING

Ming-Yen Cheng1,2 and Chun-Yi Lee2

1Department of Statistical Science, University College London

2Department of Mathematics, National Taiwan University

ABSTRACT

In many survival studies, observation on the occurrence of the event of interest

(called a failure) may be prevented by the previous occurrence of another event (called

a censoring event). We assume the random censorship model in which the censoring

time is independent of the survival time. Considering least squares local linear and lo-

cal quadratic approximations to the Nelson-Aalen estimator of the cumulative hazard

function, the estimators of the linear coefficients are called the local linear and local

quadratic estimators of the hazard rate, respectively. The asymptotic normal distribu-

tions of the local linear and local quadratic estimators are established. Performance of

the proposed estimators is illustrated by simulations. We compare the proposed esti-

mators with the kernel estimator and the Jiang and Doksum (2003) estimator by means

of the estimated MISE, and find that the local quadratic estimator behaves favorably.
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local polynomial estimation.
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1. Introduction

In many survival studies, observation on the occurrence of the event of interest
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(called a failure) may be prevented by the previous occurrence of another event (called

a censoring event). Let T1, . . . , Tn be the survival times for the n subjects under study,

and C1, . . . , Cn be the corresponding censoring times. We can only observe Xi =

min(Ti, Ci) and δi = I(Xi = Ti) (the censoring indicator), i = 1, . . . , n, where I(·) is

the indicator function. Here, we assume the random censorship model, i.e. Ci and Ti are

independent, and consider the problem of nonparametrically estimating the underlying

hazard function.

Tanner and Wong (1983) studied asymptotic properties of kernel estimators of the

hazard function based on the idea of convolution using Hajék projection. The kernel

estimator can be regarded as a convolution of the derivative of the Nelson-Aalen esti-

mator, which is the empirical cumulative hazard, with a kernel function. Müller and

Wang (1990) considered local bandwidth choice for kernel estimators with fixed higher

order kernels, and Müller and Wang (1994) proposed to estimate hazard functions with

varying kernels and data-adaptive bandwidths in order to remove boundary effects.

Jiang and Doksum (2003) considered local polynomial estimators of hazard functions

and their derivatives: the Dirac function is used to define a generalized empirical haz-

ard rate, denoted as λ̃n(·), whose integration up to time x equals to the Nelson-Aalen

estimator evaluated at x. The resulting estimators automatically correct boundary

effects.

The empirical hazard rate defined in Jiang and Doksum (2003) exists only in the

space of Schwartz distributions and is not directly computable. Here, instead of using

the Dirac function to define a generalized empirical hazard rate, we consider a local

polynomial approximation to the Nelson-Aalen estimator of the cumulative hazard func-

tion directly and then estimate its derivative (i.e. the hazard) by the derivative of the

fitted local polynomial. Cheng et al. (2006) suggested local polynomial approximation

to an estimator of the cumulative hazard function which is taken as a transformation of

the Kaplan-Meier estimator of the cumulative distribution function. Both of the above

methods automatically correct the boundary effects. However, our method is simpler

since it does not involve transformation of the Kaplan-Meier estimator. Loader (1999)

introduced local likelihood estimators of hazard rates, which employ local exponential

polynomial approximation to the Kaplan-Meier estimator. Unlike our method, this
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approach does not admit explicit solution to the maximization of the local likelihood

and requires numerical solutions.

In Section 2, we review the kernel estimator and the estimator of Jiang and Doksum

(2003) before introducing our local polynomial estimators. The asymptotic normal

distributions of the proposed estimators are given in Section 3. Numerical illustration

is given in Section 4. Section 5 provides some discussion. The proofs for the asymptotic

properties are deferred to Section 6.

2. Hazard Estimation

Under the assumption of the random censorship, let T1, . . . , Tn be i.i.d. with distribution

function F , independent of C1, . . . , Cn which are i.i.d. with distribution function G.

Let L and l denote the distribution function and the density of Xi, respectively. Then,

L̄ = F̄ Ḡ, where for any distribution function E, Ē = 1−E is the corresponding survival

function. Further let Λ(x) = − log(F̄ (x)) be the cumulative hazard function. What we

are interested in is to nonparametrically estimate the hazard function λ(x) = Λ′(x) =

f(x)/F̄ (x) on an interval [0, T ] such that L(T ) < 1. Here we assume that the density

f = F ′ exists.

In order to introduce the estimators, we define the following notations.

(1) L1(x) = P(Xi ≤ x, δi = 1) is the distribution function for the uncensored obser-

vations.

(2) L1n(x) =
∑n

i=1 I(Xi ≤ x, δi = 1)/n is the empirical distribution function based

on the uncensored observations which can be used to estimate L1(x).

(3) Ln(x) =
∑n

i=1 I(Xi ≤ x)/n is the empirical distribution function based on the

all the X’s and can be used to estimate L(x).

Note that, under the random censoring model, we have

λ(x) =
f(x)

F̄ (x)
=

Ḡ(x) dF (x)/dx

F̄ (x)Ḡ(x)
=

dL1(x)/dx

L̄(x)
.
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The Nelson-Aalen estimator of Λ(x) is

Λn(x) =

∫ x

0
(1 − Ln(u))−1dL1n(u) =

∑

i:X(i)≤x

δ(i)

n − i + 1
,

where X(i) is the order statistic corresponding to Xi , and δ(i) is the corresponding

indicator variable. Tanner and Wong (1983) proposed the following kernel estimator of

the hazard λ(x):

λ̂(x) =

∫
Kh(u − x) dΛn(u) =

n∑

i=1

Kh

(
X(i) − x

) δ(i)

n − i + 1
,

where K is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h. The kernel

estimator is a convolution of the derivative of the Nelson-Aalen estimator Λn with an

appropriate kernel function Kh . Here, the derivative of Λn can be expressed by

λn(x) =

n∑

i=1

δ(i)

n − i + 1
I
(
x = X(i)

)
.

where I
(
x = X(i)

)
is the indicator variable.

Jiang and Doksum (2003) defined the following generalized empirical hazard rate:

λ̃n(x) =

n∑

i=1

δ(i)

n − i + 1
D
(
x − X(i)

)
,

where D(x) is the Dirac function with the following property:

∫
g(u)D(u − x) du = g(x)

for any integrable function g(x) . Then
∫ x
0 λ̃n(t) dt = Λn(x) , however λ̃n(·) exists only

in the space of Schwartz distributions and is not computable. They considered the

following local least squares problem: for p = 0, 1, 2, . . . ,

min
a0,a1,··· ,ap

∫ ∞

0
Kh

(
X(i) − x

)

λn(u) −

p∑

j=0

aj(u − x)j




2

du .

Then their estimator of λ(x) is defined as the the fitted value of a0. When x is an

interior point and p = 1, the Jiang and Doksum estimator of the hazard rate is the

same as the kernel estimator.
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Suppose the cumulative hazard function has a p-th order derivative at x. Then,

using a Taylor expansion, locally it can be approximated by a p-th order polynomial:

Λ(u) ≈
p∑

j=0

Λ(j)(x)

j!
(u − x)j =

p∑

j=0

aj(x)(u − x)j

for u in a neighborhood of x. Note that aj(x) = Λ(j)(x)/j!, j = 0, 1, 2, . . . , p . Let us

consider the following local least squares problem: for p = 0, 1, 2,

min
a0,a1,··· ,ap

n∑

i=1

Kh

(
X(i) − x

)

Λn

(
X(i)

)
−

p∑

j=0

aj

(
X(i) − x

)j



2

.

Denote the solution of (a0, a1, . . . , ap)
T to the above local least squares problem by

â(x) ≡ (â0(x), â1(x), . . . , âp(x))T . Then, our estimator of the hazard rate λ(x) = Λ′(x)

is â1(x). We consider two cases: when p = 1 the above procedure yields the local linear

estimator λ̂loclin(x), and when p = 2, we have the local quadratic estimator λ̂locqua(x).

Denote

Sk(x) =
1

n

n∑

i=1

Kh

(
X(i) − x

) (
X(i) − x

)k
, k = 0, 1, 2, 3, 4 ,

Tk(x) =
1

n

n∑

i=1

Kh

(
X(i) − x

) (
X(i) − x

)k ∑

X(j)≤X(i)

δ(j)

n − j + 1
, k = 0, 1, 2 .

Then, we can write

λ̂loclin(x) =
S0(x)T1(x) − S1(x)T0(x)

S0(x)S2(x) − S2
1(x)

, and λ̂locqua(x) =
∆1(x)

∆(x)
,

where

∆(x) = S0(x)S2(x)S4(x) + 2S1(x)S2(x)S3(x)

− S3
2(x) − S0(x)S2

3(x) − S2
1(x)S4(x) ,

and

∆1(x) = [S2(x)S3(x) − S1(x)S4(x)] T0(x) +
[
S0(x)S4(x) − S2

2(x)
]
T1(x)

+ [(S1(x)S2(x) − S0(x)S3(x)] T2(x) .
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3. Asymptotic properties

For a given point x0 ∈ (0, T ), the following assumptions are needed in order to investi-

gate the asymptotic normal distributions of λ̂loclin(x0) and λ̂locqua(x0).

(A1) The hazard function λ(x) has a continuous third derivative at the point x0 .

(A2) The sequence of bandwidths h tends to zero such that nh → ∞ as n → ∞ .

(A3) L(x) has a continuous fifth derivative at the point x0 .

(A4) The kernel function K is continuous, symmetric and of bounded variation, and

it has a bounded support [−1, 1] . Assume that µk =
∫

K(u)uk du , k = 0, 2, 4, 6

exist , and vk =
∫

K2(u)uk du , k = 0, 1, 2, 3, 4 exist.

In this section, we will establish the asymptotic normality of the local linear and

local quadratic estimators. Since both of our estimators are combinations of Sk(x0)

and Tk(x0), we will analyze Sk(x0) and Tk(x0) for a given point x0 ∈ (0, T ) first.

Lemma 3.1. Under conditions (A2) − (A4),

Sk(x0) =

{
hkµkl(x0) + 1

2hk+2µk+2l
′′(x0) + op(h

k+2) , k = 0, 2, 4 ;

hk+1µk+1l
′(x0) + 1

6hk+3µk+3l
′′′(x0) + op(h

k+3) , k = 1, 3 .

Proof. Notice that Sk(x0) are sums of i.i.d. random variables, for k = 0, 1, 2. By the

Strong Law of Large Numbers, we know that Sk(x0)
a.s.−→ E(Sk(x0)) . Then, using

change of variable for integration, a Taylor expansion and the assumption that the

kernel function is symmetric, we have the following result:

Sk(x0) =
1

n

n∑

i=1

Kh(X(i) − x0)(X(i) − x0)
k

=

∫
Kh(u − x0)(u − x0)

kl(u) du (1 + op(1))

= hk

∫
K(v)vkl(x0 + hv) dv (1 + op(1))

=

{
hkµkl(x0) + 1

2hk+2µk+2l
′′(x0) + op(h

k+2) , k = 0, 2, 4 ,

hk+1µk+1l
′(x0) + 1

6hk+3µk+3l
′′′(x0) + op(h

k+3) , k = 1, 3 .
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Theorem 3.1. Under conditions (A1) − (A4), for k = 0, 1, 2,

√
nh−2k−1

{
Tk(x0) − β̃k1

0 (x0)
}

d−→ N
(

0, L(x0)l(x0)g(x0)v2k

)
,

where

β̃k1
0 (x0)

=





hkµkΛ(x0)l(x0)

+hk+2µk+2

[
λ(x0)l

′(x0) + 1
2Λ(x0)l

′′(x0) + 1
2λ′(x0)l(x0)

]

+hk+4µk+4

{
1
4λ′(x0)l

′′(x0) + 1
6 [λ(x0)l

′′′(x0) + λ′′(x0)l(x0)]

+ 1
24 [Λ(x0)l

′′′′(x0) + λ′′′(x0)l(x0)]
}

,

k = 0, 2 ,

hk+1µk+1 [Λ(x0)l
′(x0) + λ(x0)l(x0)]

+hk+3µk+3

{
1
2 [λ(x0)l

′′(x0) + λ′(x0)l
′(x0)]

+1
6 [Λ(x0)l

′′′(x0) + λ′′(x0)l(x0)]
}

,

k = 1 .

and

g(x0) =

∫ x0

0
[L̄(u)]−2 dL1(u) .

Theorem 3.2. Under conditions (A1) − (A4),

√
nh

{
λ̂loclin(x0) − λ(x0) −

h2

6

3(µ4 − µ2
2)λ

′(x0)l
′(x0)/l(x0) + µ4λ

′′(x0)

µ2

}

d−→ N
(

0,
L(x0)g(x0)

µ2
2l(x0)

v2

)
.

√
nh

{
λ̂locqua(x0) − λ(x0) −

h2

6

µ4

µ2
λ′′(x0)

}
d−→ N

(
0,

L(x0)g(x0)

µ2
2l(x0)

v2

)
.

The proofs of Theorem 3.1 and Theorem 3.2 are postponed to Section 6.

4. Simulation

In this section, we compare the performance of our estimators with the kernel estima-

tor and the Jiang and Doksum’s estimator (J&D for short) (p = 1) through simulation
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studies. We use the Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| ≤ 1) for all the es-

timators. In our simulation studies, we consider two underlying distributions, Uniform

model and Weibull model.

In order to control the amount of censoring, we use the proportional censorship

model (see Koziol and Green, 1976; González-Manteiga et al., 1996), in which G is

defined by Ḡ = F̄ η for some η > 0. This model gives a probability of censoring

ξ = η/(1+η), thus allows a simple control of the amount of censoring in the simulation

through the choice of η.

Example 4.1 (Uniform) We simulate 500 samples with size n = 500 from the uniform

distribution: Tj
iid∼ F (x) = Uniform[0, 1]. Then the true hazard rate is λ(x) = 1/(1−x)

which is a strictly increasing function on [0, 1] and has the range [0,+∞), see the solid

line in Figure 1. The proportional censorship model is used and then, Cj
iid∼ G(x) =

1−F̄ η(x). We choose η = 1
9 and 1

2 so that the probabilities for censoring are ξ = 1
10 and

1
3 , respectively. Besides, we make the assumption that Tj is independent of Cj. Figure 1

shows our local linear estimates, local quadratic estimate, the kernel estimate, and the

J&D estimate with p = 1, which is the same as the kernel estimator for interior points,

based on one of the 500 simulated samples. The four estimators behave similarly at the

interior points but very differently especially at the right boundary points x ∈ (1−h, 1].

The kernel estimator suffers from boundary effects near the endpoints. We use a fixed

bandwidth h = 0.05 for all the four estimators.

Example 4.2 (Weibull) We simulate 500 samples with size n = 500 from the Weibull

distribution: Tj
iid∼ F (x) = 1 − exp(−√

x), and let Cj
iid∼ G(x) = 1 − F̄ η(x) for η = 1

9

and 1
2 . Tj is independent of Cj . Then the hazard rate is a strictly decreasing function

on [0, 1] and has the range [0,+∞), see the solid line in Figure 2. Figure 2 depicts

the four estimates based on one of the 500 simulated samples. It shows that all of the

four estimators behave differently at the boundary points x ∈ [0, h). Among these four

estimators, the kernel estimator performs the worst. Here, we use a fixed bandwidth

h = 0.1 for the four estimators.

To examine the four estimators more closely, we compute the estimated MISEs.
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Figure 1 Simulation results for Example 4.1. The probability for censoring ξ is 1
10 in

the top plot and is 1
3 in the bottom plot.
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Figure 2 Simulation results for Example 4.2. The probability for censoring ξ is 1
10 in

the top plot and is 1
3 in the bottom plot.
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We choose h to be a sequence of 0.08 ∗ 1.1k, k = 0, 1, . . . , 15 and find the smallest

estimated MSE at every grid point among these h. Then the estimated MISE is a

numeric integration of the smallest estimated MSE. It provides a measure of overall

performance when an ideal local bandwidth is used. Because there are few observations

near the endpoint 1 in the uniform model, we consider to estimate MISE form 0 to the

maximum uncensored data in each simulation. Let X̃
(j)
(i) be the ith order statistic of

the uncensored observations in the jth simulation. We consider a = min
j

(
max

i

(
X̃

(j)
(i)

))

and estimate MISE = E

{∫ a

0
[λ̂(x) − λ(x)]2 dx

}
in which a = 0.98 and 0.92 for the 1

10

and 1
3 censoring rates, respectively.

Table 1 presents the estimated MISE’s for the four estimators under the uniform

model. It shows that the local quadratic estimator has the smallest estimated MISE

among these estimators for the 500 samples under 1
10 censoring rate. Notice that the

true hazard in the uniform case is λ(x) = 1/(1 − x) which tends to +∞ when x gets

close to 1. The J&D estimator tends to over-estimate the real hazard and hence its

MSE’s at right boundary points (x ∈ (1 − h, 0.98)) are much larger than that of our

local quadratic estimator under 1
10 censoring rate. The local linear estimator has the

smallest estimated MISE among these estimators for the 500 samples under 1
3 censoring

rate.

Table 2 reports the estimated MISE’s for these estimators under the weibull model.

It shows that the local quadratic estimator behaves favorably compared to the other

estimators under both censoring rates. We conclude from both the numerical and the

graphical viewpoints that the performance of our local quadratic estimator is superior

to the J&D estimator.

5. Discussion

We propose local polynomial estimation of hazard rate based on a local polynomial

approximation to the Nelson-Aalen estimator of the cumulative hazard function using

the local least squares idea. The proposed estimators admit explicit forms, hence can
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Table 1 Estimated MISE under uniform model

local quadratic local linear J&D kernel

ξ = 1/10 1.10722 3.49005 9.37975 3.62497

ξ = 1/3 0.45119 0.18086 0.93186 0.37788

Table 2 Estimated MISE under weibull model

local quadratic local linear J&D kernel

ξ = 1/10 0.02026 0.04317 0.02912 0.08261

ξ = 1/3 0.02360 0.04651 0.03091 0.08589

be implemented easily. In addition, they are free from boundary effects which is a

serious problem of the kernel estimator suffer in practice. Compared to the the local

polynomial methods proposed by Jiang and Doksum (2003) and Cheng et al. (2006),

our estimators are easier to compute while processing the same theoretical properties.

By contrast, the local likelihood approach of Loader (1999) requires numerical solutions

to the maximum local likelihood problem and asymptotic normal distributions of the

local likelihood estimators remain unknown. On the other hand, it guarantees that the

hazard rate estimator is always nonnegative, while the local polynomial approaches do

not. It is an interesting topic for future studies to investigate theoretical properties

of the local likelihood hazard estimators and to compare it with the local polynomial

methods through numerical studies.

6. Proofs

Proof of Theorem 3.1

1. By the definitions of Tk(x0) and the Nelson-Aalen estimator, and using change of
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variable, Tk(x0) can be decomposed into four components:

Tk(x0) =
1

n

∑
Kh(X(i) − x0)(X(i) − x0)

k
∑

X(j)≤X(i)

δ(j)

n − j + 1

=

∫
Kh(u − x0)(u − x0)

k
∑

X(j)≤u

δ(j)

n − j + 1
dLn(u)

= hk

∫
K(v)vk

(∫ x0+hv

0
dΛn(t)

)
dLn(x0 + hv)

= hk

∫
K(v)vkβnv(x0) dL(x0 + hv)

+ hk

∫
K(v)vkγnv(x0) dL(x0 + hv)

+ hk

∫
K(v)vkβnv(x0) (dLn(x0 + vh) − dL(x0 + hv))

+ hk

∫
K(v)vkγnv(x0) (dLn(x0 + vh) − dL(x0 + hv))

≡ β̃k1
n (x0) + γ̃k1

n (x0) + β̃k2
n (x0) + γ̃k2

n (x0) , k = 0, 1, 2 .

where

∫ x0+hv

0
dΛn(t) =

∫ x0+hv

0
dΛ(t) +

∫ x0+hv

0
(dΛn(t) − dΛ(t))

≡ βnv(x0) + γnv(x0) .

We will show that β̃k1
n (x0) represents the expectation of Tk(x0), γ̃k1

n (x0) is the

random error, and β̃k2
n (x0) and γ̃k2

n (x0) are the remainder terms.

2. Before looking into these four components, we analyze βnv(x0) and γnv(x0).

(a) First, by a Taylor expansion, we get

βnv(x0) =

∫ x0+hv

0
dΛ(t) =

∫ x0+hv

0
λ(t) dt = Λ(x0 + hv)

= Λ(x0) + hvλ(x0) +
1

2
h2v2λ′(x0) + o(h2) .

(b) Second, from Lo et al. (1989), there is an asymptotic representation of the

Nelson-Aalen estimator as a sum of i.i.d. random variables:

Λn(x0) − Λ(x0) =
1

n

n∑

i=1

ξ(Xi, δi, x0) + rn(x0) , (1)
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where

sup
0≤x0≤T

|rn(x0)| = O

(
log n

n

)
a.s.

for z ≥ 0 , x0 ≥ 0 , δ = 1 or 0 ,

ξ(z, δ, x0) = −g(min(z, x0)) +
I(z ≤ x0, δ = 1)

L̄(x0)
.

Note that the random variable ξ(Xi, δi, x0) are bounded, uniformly in 0 ≤
x0 ≤ T , E ξ(Xi, δi, x) = 0 , and

Cov(ξ(Xi, δi, s), ξ(Xi, δi, t)) = g(min(s, t)) .

Using the definition of γnv(x0) and the asymptotic representation of the Nelson-

Aalen estimator (1), we can obtain the following almost surely representation of

γnv(x0):

γnv(x0) = σnv(x0) + env(x0) (2)

where

σnv(x0) =
1

n

n∑

i=1

∫ x0+hv

0
dξ(Xi, δi, t) =

1

n

n∑

i=1

ξ(Xi, δi, x0 + hv)

is the stochastic component of Tk(x0), and env(x0) is the negligible error of the

approximation which satisfies

sup
0≤x0≤T

|env(x0)| = O

(
log n

n

)
a.s.

3. Then, we study the four elements of Tk(x0).

(a) By the definition of β̃k1
n (x0) and Taylor expansions, we have the following

result:

β̃k1
n (x0)

=





hkµkΛ(x0)l(x0)

+hk+2µk+2

[
λ(x0)l

′(x0) + 1
2Λ(x0)l

′′(x0) + 1
2λ′(x0)l(x0)

]

+hk+4µk+4

{
1
4λ′(x0)l

′′(x0) + 1
6 [λ(x0)l

′′′(x0) + λ′′(x0)l(x0)]

+ 1
24 [Λ(x0)l

′′′′(x0) + λ′′′(x0)l(x0)]
}

+ o(hk+4) ,

k = 0, 2 ;

hk+1µk+1 [Λ(x0)l
′(x0) + λ(x0)l(x0)]

+hk+3µk+3

{
1
2 [λ(x0)l

′′(x0) + λ′(x0)l
′(x0)]

+1
6 [Λ(x0)l

′′′(x0) + λ′′(x0)l(x0)]
}

+ o(hk+3) ,

k = 1 .
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(b) Next, using the almost surely representation of γnv(x0) given in (2), γ̃k1
n (x0)

can be decomposed into two parts as in the following lemma.

Lemma 6.1. Under conditions (A2) and (A4), for k = 0, 1, 2,

γ̃k1
n (x0) = σ̃k1

n (x0) + ẽk1
n (x0) ,

where

σ̃k1
n (x0) =

1

n

n∑

i=1

hk

∫
K(v)vkξ(Xi, δi, x0 + hv) dL(x0 + hv)

is the stochastic component of Tk(x0), and ẽk1
n (x0) is the remainder term of

the approximation satisfying

sup
0≤x0≤T

∣∣∣ẽk1
n (x0)

∣∣∣ = O

(
hk

(
log n

n

))
.

Proof.

γ̃k1
n (x0) = hk

∫
K(v)vkγnv(x0) dL(x0 + hv)

= hk

∫
K(v)vkσnv(x0) dL(x0 + hv)

+ hk

∫
K(v)vkenv(x0) dL(x0 + hv)

≡ σ̃k1
n (x0) + ẽk1

n (x0) ,

σ̃k1
n (x0) = hk

∫
K(v)vkσnv(x0) dL(x0 + hv)

=
1

n

n∑

i=1

hk

∫
K(v)vkξ(Xi, δi, x0 + hv) dL(x0 + hv) ,

ẽk1
n (x0) = hk

∫
K(v)vkenv(x0) dL(x0 + hv)

= O

(
hk

(
log n

n

))
.

Lemma 6.2. Under conditions (A2) − (A4), for k = 0, 1, 2,

√
nh−2k−1 σ̃k1

n (x0)
d−→ N

(
0, L(x0)l(x0)g(x0)v2k

)
.
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Proof. Using the fact that E ξ(Xi, δi, x0) = 0 , we can easily derive that

E
(
σ̃k1

n (x0)
)

= 0 .

Besides, using the fact that Cov(ξ(Xi, δi, s), ξ(Xi, δi, t)) = g(min(s, t)) , change

of variable for integraion, integration by parts, and Taylor expansions, we

can obtain the covariance of
(
σ̃k1

n (x0), σ̃m1
n (x0)

)
.

Let Kk(s) = K(s)sk , y = x0 + ht , and Ck(p) =
∫ p
−∞

Kk(s) ds ,

Cov
(
σ̃k1

n (x0), σ̃m1
n (x0)

)

=
1

n
hk+m

∫ ∫
Kk(s)Km(t)g(min(x0 + hs, x0 + ht)) dL(x0 + hs) dL(x0 + ht)

= − 1

n
hk+m

∫
Kk(s)

∫ x0+hs

−∞

L(y) d

[
Km

(
y − x0

h

)
g(y)

]
dL(x0 + hs)

= − 1

n
hk+m

∫
L(y)

∫ y−x0
h

−∞

Kk(s) dL(x0 + hs)

[
Km

(
y − x0

h

)
dg(y) + g(y)dKm

(
y − x0

h

)]
(1 + o(1))

= − 1

n
hk+m+1

∫
L(y)l(x0)Ck

(
y − x0

h

)[
Km

(
y − x0

h

)
dg(y)

+g(y)dKm

(
y − x0

h

)]
(1 + o(1))

= − 1

n
hk+m+1l(x0)

{∫
Ck(t)Km(t)L(x0 + ht) dg(x0 + ht)

+

∫
Ck(t)L(x0 + ht)g(x0 + ht) dKm(t)

}
(1 + o(1))

=
1

n
hk+m+1l(x0)

{∫
Ck(t)Km(t)g(x0 + ht) dL(x0 + ht)

+

∫
Km(t)Kk(t)L(x0 + ht)g(x0 + ht) dt

}
(1 + o(1))

=
1

n
hk+m+1L(x0)l(x0)g(x0)vk+m(1 + o(1)) .

Because σ̃k1
n (x0) is a sum of i.i.d. random variables, by the Central Limit

Theorem, as n → ∞,

√
nh−2k−1 σ̃k1

n (x0)
d−→ N

(
0, L(x0)l(x0)g(x0)v2k

)
.
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(c) As for the last two parts of Tk(x0), since

sup
x

|Ln(x) − L(x)| = O
(
(log n/n)1/2

)
a.s., we have the following results.

Lemma 6.3. Under conditions (A2) − (A4), for k = 0, 1, 2,

sup
0≤x0≤T

∣∣∣β̃k2
n (x0)

∣∣∣ = O

(
hk

(
log n

n

)1/2
)

a.s.

E
(∣∣∣β̃k2

n (x0)
∣∣∣
r)

= O

((
hk(log n)1/2

n1/2

)r)
for r = 1, 2 ;

and

sup
0≤x0≤T

∣∣∣γ̃k2
n (x0)

∣∣∣ = O

(
hk

(
log n

n

)1/2
)

a.s.

E
(∣∣∣γ̃k2

n (x0)
∣∣∣
r)

= O

((
hk(log n)1/2

n1/2

)r)
for r = 1, 2 .

Then Theorem 3.1 follows from Lemmas 6.1, 6.2, and 6.3.

Proof of Theorem 3.2

Proof. (i) By the asymptotic normality of Tk(x0), we have

√
nh−3

{
S0(x0)T1(x0) − h2µ2l(x0)

[
Λ(x0)l

′(x0) + λ(x0)l(x0)
]

− h4

6

{
µ4l
{
3
[
λ(x0)l

′′(x0) + λ′(x0)l
′(x0)

]
+
[
Λ(x0)l

′′′(x0) + λ′′(x0)l(x0)
]}

+ 3µ2
2l

′′(x0)
[
Λ(x0)l

′(x0) + λ(x0)l(x0)
] }}

d−→ N
(

0, g(x0)L(x0)l
3(x0)v2

)
.

√
nh−5

{
S1(x0)T0(x0) − h2µ2Λ(x0)l(x0)l

′(x0)

+
h4

6

{
µ2

2l
′(x0)

{
6λ(x0)l

′(x0) + 3
[
Λ(x0)l”(x0) + λ′(x0)l(x0)

] }

− µ4Λ(x0)l(x0)l
′′′(x0)

}}

d−→ N
(

0, g(x0)L(x0)l(x0)l
′2(x0)µ2v0

)
.
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√
nh−3

{
[S0(x0)T1(x0) − S1(x0)T0(x0)]

−
{
h2µ2l

2(x0) +
1

2
h4
[
(µ4 + µ2

2)l(x0)l”(x0) − 2µ2
2l

′2(x0)
] }

λ(x0)

− 1

6
h4[3(µ4 − µ2

2)λ
′(x0)l(x0)l

′(x0) + µ4λ
′′(x0)l

2(x0)]

}

d−→ N
(

0, g(x0)L(x0)l
3(x0)v2

)
.

S0(x0)S2(x0) − S2
1(x0)

= h2µ2l
2(x0) +

1

2
h4
[
(µ4 + µ2

2)l(x0)l
′′(x0) − 2µ2

2l
′2(x0)

]
+ op(h

4) .

Hence, we have the result

√
nh

{
λ̂loclin(x0) − λ(x0) −

h2

6

3(µ4 − µ2
2)λ

′(x0)l
′(x0)/l(x0) + µ4λ

′′(x0)

µ2

}

d−→ N
(

0,
L(x0)g(x0)

µ2
2l(x0)

v2

)
.

(ii)

√
nh−17

{
[S2(x0)S3(x0) − S1(x0)S4(x0)] T0(x0)

− 1

6
h8(µ2

4 − µ2µ6)Λ(x0)l(x0)[3l
′(x0)l

′′(x0) − l(x0)l
′′′(x0)]

}

d−→ N
(

0,
1

36
(µ2

4 − µ2µ6)
2[3l′(x0)l

′′(x0) − l(x0)l
′′′(x0)]

2g(x0)L(x0)l(x0)v0

)
.

√
nh−11

{[
S0(x0)S4(x0) − S2

2(x0)
]
T1(x0)

− h6µ2(µ4 − µ2
2)l

2(x0)
[
Λ(x0)l

′(x0) + λ(x0)l(x0)
]

− 1

6
h8
{
3µ2(µ6 − µ2µ4)l(x0)l

′′(x0)
[
Λ(x0)l

′(x0) + λ(x0)l(x0)
]

+ µ4(µ4 − µ2
2)l

2(x0)
{
3[λ(x0)l

′′(x0) + λ′(x0)l
′(x0)]

+ [Λ(x0)l
′′′(x0) + λ′′(x0)l(x0)]

} }}

d−→ N
(

0, (µ4 − µ2
2)

2g(x0)L(x0)l
5(x0)v2

)
.
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√
nh−13

{
[S1(x0)S2(x0) − S0(x0)S3(x0)] T2(x0)

− h6µ2(µ
2
2 − µ4)Λ(x0)l

2(x0)l
′(x0)

− 1

6
h8
{
µ4(µ

2
2 − µ4)l(x0)l

′(x0)
{
6λ(x0)l

′(x0)

+ 3
[
Λ(x0)l

′′(x0) + λ′(x0)l(x0)
]}

+ µ2(µ2µ4 − µ6)Λ(x0)l
2(x0)l

′′′(x0)
}}

d−→ N
(

0, (µ4 − µ2
2)

2g(x0)L(x0)l
3(x0)l

′2(x0)v4

)
.

√
nh−11

{
[S2(x0)S3(x0) − S1(x0)S4(x0)]T0(x0)

+
[
S0(x0)S4(x0) − S2

2(x0)
]
T1(x0)

+ [S1(x0)S2(x0) − S0(x0)S3(x0)] T2(x0)

−
{
h6µ2(µ4 − µ2

2)l
3(x0) −

1

2
h8
{
(µ2µ6 + µ2

4)l
2(x0)l

′′(x0)

+ 2µ4(µ
2
2 − µ4)l(x0)l

′2(x0) − 2µ2
2µ4l

2(x0)l
′′(x0)

} }
λ(x0)

+
1

6
h8µ4(µ4 − µ2

2)λ
′′(x0)l

3(x0)

}

d−→ N
(

0, (µ4 − µ2
2)

2g(x0)L(x0)l
5(x0)v2

)
.

∆(x0) = h6µ2(µ4 − µ2
2)l

3(x0) +
1

2
h8
{
(µ2µ6 + µ2

4)l
2(x0)l

′′(x0)

+ 2µ4(µ
2
2 − µ4)l(x0)l

′2(x0) − 2µ2
2µ4l

2(x0)l
′′(x0)

}
+ op(h

8) .

Hence, we have the result

√
nh

{
λ̂locqua(x0) − λ(x0) −

h2

6

µ4

µ2
λ′′(x0)

}
d−→ N

(
0,

L(x0)g(x0)

µ2
2l(x0)

v2

)
.
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