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ABSTRACT

With the rapid growth of social network services, network-related studies have
become a burgeoning research area. Allocating a treatment to a unit affects the unit as
well as its neighbors, simultaneously resulting in a treatment effect and a network effect.
In the literature of experimental designs, Parker, Gilmour, and Schormans (2017) and
Chang, Phoa, and Huang (2021) both adopted a linear network effect model to design
experiments on general networks. However, this model has not been heavily recognized
yet. Kolaczyk and Cséardi (2014) reviewed statistical models for network graphs such
as exponential random graph models and network block models. Zhang et al. (2020)
considered a network-based logistic regression model to describe the network effect.
In this article, we propose a new statistical model for networks in the same spirit as
Kolaczyk and Csardi (2014) and Zhang et al. (2020). Moreover, we derive conditions
for selecting optimal designs and illustrate our theory through simulations and real

examples.
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1. Introduction

In the 21st century, with the rapid development of the Internet, it has been more
common for people to meet a group of friends with common interests in virtual worlds
such as Facebook, Twitter, or Instagram. Some people set up online shopping compa-
nies, making it easier for people to have different shopping options. These interpersonal
relationships and user behaviors can be described through social networks and recom-
mendation networks. In practice, examples of network structures are ubiquitous, such
as in agricultural experiments, bioinformatics, medical experiments, machine learning,

physics, social sciences, and many other scientific fields.

Most of the literature on networks focuses on modeling, parameter estimation, pre-
diction and inference, but rarely discusses designing experiments. Moreover, many sta-
tistical theories for designing experiments have assumed that the experimental units are
uncorrelated. Recently, some related works have been proposed. In the field of experi-
mental design, the nodes in networks represent experimental units. The edges represent
the connections between experimental units. If two experimental units (nodes) are con-
nected, one is called a neighbor of the other. Besides, a treatment affects both the unit
to which it is applied and the neighbors of that unit. These effects are called treat-
ment effects and network effects, respectively. Parker, Gilmour, and Schormans (2017)
and Chang, Phoa, and Huang (2021) both adopted a linear network effect model to
design experiments with unstructured treatments on general undirected networks. The
difference is that Parker, Gilmour, and Schormans (2017) regarded the network effects
as fixed effects, while Chang, Phoa, and Huang (2021) modeled them as random effects.
However, this model has not been heavily recognized yet. Therefore, we are devoted to
proposing a new statistical model for networks in this article, which incorporates the
concept of the network literature. Additionally, we discuss design issues under the new

model.

The rest of this article is organized as follows. In Section 2, we review the literature
of some popular network modeling methods as well as the experiments with network
structures. In Section 3, we set up a novel statistical model, illustrate the optimality

criterion, and present some results of theoretical conditions for optimal designs. In
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Section 4, numerical examples for specific graphs and their real applications are given,
such as bipartite graphs, path graphs, and cycle graphs. Three real networks are

investigated in Section 5. At last, some concluding remarks are given in Section 6.

2. Literature Review

In the last century, researchers in different fields have been enthusiastic about
network studies, so the literature about networks has been burgeoning. In the field
of statistics, exponential random graph models (ERGMs) are one of the most popular
network modeling methods. ERGMs are similar to generalized linear models, while
ERGMs use many metrics, such as the degree, density, and centrality, to describe the
structural features of a network.

ERGMs were first proposed by Holland and Leinhardt (1981) and further devel-
oped by Frank and Strauss (1986). Meanwhile, Frank and Strauss (1986) proposed
Markov random graph models, which was the mainstay of ERGMs. However, the
Markov random graph model had been rarely adopted by researchers until Wasserman
and Pattison (1996) extended it to p* models, which became the ERGMs applied for so-
cial networks. The log-linear form of the p* models facilitated extensions of the original
basic framework, resulting in models for different types of data, such as multivariate
network data ( Wasserman and Pattison, 1999 ), valued network data ( Robins, Pat-
tison, and Wasserman, 1999 ), and bipartite network data ( Skvoretz and Faust, 1999
).

Nowadays, ERGMs have become a powerful network modeling method and have
been widely explored. Social selection ( Robins, Elliott, and Pattison, 2001a ) and social
influence ( Robins, Pattison, and Elliott, 2001b ) models considered actor attributes in
their models. Snijders (2002) offered a numerical method for estimating the parameters
of the ERGM using the Markov chain Monte Carlo (MCMC) methods, such as the
Gibbs sampling and the Metropolis-Hastings sampling. Almquist and Butts (2014)
showed how to extend a logistic network regression approach to serve as a framework
for modeling large networks with dynamic vertex sets. Jiao et al. (2017) used ERGMs
to analyze the subjective well-being of teenagers under peer relationship networks and

to draw the conclusion that there exist positive reciprocal effects, positive transitivity
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effects, and negative expansiveness effects.

In addition to ERGMs, network block models are also a type of popular network
modelings with many applications. When the nodes are divided into subgroups based
on their attributes, the density of ties from one subgroup to another could be quite
different. It means that the graph contains communities, which are characterized by
interconnected subsets with specific edge densities. For example, edges within commu-
nities may have a higher probability to be connected than those between communities.

Thus, the notion of “blocking” appeared in social networks.

The first simple block model was proposed by Fienberg and Wasserman (1981).
Wang and Wong (1987) modified it and then proposed a p; block model involving the
nodal attributes as well as the individual nodes. Nowicki and Snijders (2001) initiated
a statistical approach to a posteriori block modeling for digraphs and valued digraphs.
They assumed that the probability distribution of the relation between two nodes only
depends on the latent classes to which they belong and the relations are conditionally
independent on these classes. Karrer and Newman (2011) demonstrated how to gener-
alize the block model when missing elements exist, in order to improve the objective
function for community detections. Kolaczyk and Csardi (2014) provided an extensive
review to different statistical analyses of network data (e.g., visualization, network mod-
eling, static and dynamic network process, and so on), in use of the R programming

language ( R Core Team, 2020 ).

Different from the two network modeling methods mentioned above, which regard
the edges of the network as responses, Zhang et al. (2020) initiated a network-based
logistic regression (NLR) model. They mainly focused on how to bring the network
structure into a traditional classification problem, i.e., the class label instead of the
edges is the response. The NLR model assumed that whether two nodes are connected
is affected by their responses and their similarity in predictors. Furthermore, attributes
of each node were also used to predict class labels through the classical logistic regression

model.
As mentioned above, the majority of literature about networks has focused on

parameter estimation, prediction, and inference, while few discussed design experimen-

tation. Moreover, most statistical theories for randomized experiments have assumed
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that experimental units are uncorrelated. Besag and Kempton (1986) described that
the response of a plot is affected by the particular treatments on neighboring plots and
discussed four distinct agricultural experimental applications. Druilhet (1999) investi-
gated the optimality of circular neighbor-balanced block designs. They considered both
neighbor (i.e., network) effects and treatment effects in the model.

Recently, Parker, Gilmour, and Schormans (2017) have initiated a new approach,
using As-optimality, to design network experiments. They considered unstructured
treatments and experimental units with a general network structure. They pointed
out that the assumption of treatment effect additivity no longer holds because of the
existence of network effects. Therefore, they proposed a linear network effect model in
which both treatment effects and network effects were regarded as fixed effects.

Chang, Phoa, and Huang (2021) investigated a similar design problem to Parker,
Gilmour, and Schormans (2017), but they assumed that network effects were random
variables. They pointed out that when one experimental unit is transmitting an effect
to another, this effect is possible to be perturbed by unknown noises. Besides, they pro-
vided theoretical conditions for efficiently estimating treatment effects and accurately
predicting network effects. Therefore, they believed using stochastic mechanisms to
model network effects is a reasonable choice even if the treatments are specified in
advance.

We notice that in network modeling, the linear network effect model has been sel-
dom applied and recognized yet. Therefore, we combine the concept of the NLR ( Zhang
et al., 2020 ) and network block models in Kolaczyk and Csardi (2014) into the design
experimentation problem. As noted, the research of networks is important and benefi-
cial to many fields, while existing research in experimental design paid little attention
to general network structures. Hence, we are committed to designing experiments on

networks and proposing a more appropriate statistical model.

3. Methodology

3.1 Model

Consider a network G = (V,E), a collection of nodes V and edges E C (V x V).
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The nodes represent experimental units to which some treatments are applied. The
edges represent the relationships between the units. Suppose we have |V| = N units
and m treatments. We assume that each unit receives exactly one treatment. Let
U= (Uy,...,Un)T be an N x m unit-treatment incidence matrix with [U];; = 1 if the
1th node receives the jth treatment and zero otherwise. In each row of U, i.e., UiT ,
there is exactly one non-zero element.

Let Y = (y1,...,yn)T € RN be the vector of responses, where ¥; is the response of
the ith node. Given the network and U, the relationship between the treatments and

the responses is modeled by

Y =Ua+e, (1)

T is the m-dimensional vector of treatment effects and the

where a = (aq,..., )
error term & is normally distributed with zero mean and covariance matrix o?Iy. We
assume the treatment effects a to be unknown constants. In addition to the treatment
effects, we assume that there exist network effects due to the relationship between
units, where their responses are correlated and depend on the treatments applied to
them. To describe the network structure, the relationship between units is represented
by an N x N adjacency matrix A where [A],. = 1 if and only if unit ¢ and unit k&
are connected, and zero otherwise. Following the convention, we set [A],, = 0. For
simplicity, we assume that edges are undirected. Therefore, A is a symmetric matrix,

Le., [Aly = [Aly-

(2

Following Zhang et al. (2020), we express our network effects similar to the random
graph logistic model, where the probability of a connection between pairs of vertices
depends on their treatments, i.e., [A], ;S are random variables. In practical applications,

the network structure is observed from the data; each [A] ;; 1s fixed at zero or one. Our
model assumes that whether two nodes are connected is influenced by their similarity

in treatments as well as the overall treatment-connection pattern of the network.

Let Ly(;)¢(j) be the number of observed edges in the network connecting pairs of
vertices with treatment ¢(i) and ¢(j), where ¢(i) and t(j) are the treatments applied to

unit ¢ and unit j, and Lygyy(j) = Ly(j))- Given U, we assume the edges are independent



OPTIMAL DESIGNS ON UNDIRECTED NETWORK STRUCTURES FOR
NETWORK-BASED MODELS 7

random variables, i.e., [A]Z-js are independent, such that

exp(si; + ¢Lt(i)t(j))
P([A];; = 1|U:, U;) = - i
([ ]Z] | i) 1+ exp(sij + ¢Lygiye(s)) " ?

where s;; = UZ-T U; represents the similarity of the 7th node and the jth node according
to their predictors and ¢ indicates the strength of blocks on the link probability. The
s;j in the model describes the local patterns of the network because it only considers
the similarity of treatments between two nodes. On the other hand, the Ly reflects
the global patterns of the network. We note that Z;’;] Ly(i)e(j) 1s equal to the number

of edges of an observed network.

The equation (2) implicitly assumes that receiving the same treatment, i.e., s;; = 1,
would result in a higher probability of connection. Similarly, when ¢ is positive, larger
Ly(ye(j) will lead to a higher connection probability. By contrast, when ¢ is negative,
larger Ly(;)(;) will have the opposite results. As ¢ approaches zero, the influence of
Lygye(j) is getting small; that is, the connection probabilities are only determined by

the local patterns of the network.

Our statistical model combines (1) and (2). Let 8 = (a”,0,$)”. We assume the
marginal distribution of [A];; is irrelevant to 8, so the likelihood of # conditioned on A

is proportional to

L(6) = P(Y,A[U) = P(Y|U)P(A|U)

N N
= HP(yi|Ui)HP([A]ij|Ui’Uj)
i=1 i#£]j

1=

N
1 1 Al -
~TT s o0 |5z (= U7 )? | T i (1 =m0

2
1 2ro it

3.2 Optimality Criterion

In this study, we strive for finding a design that can efficiently estimate 8 under the
D-optimality ( Kiefer and Wolfowitz, 1960 ), which is to maximize the determinant of

the Fisher information matrix of 8. We begin with the log-likelihood of the parameters



8 W.-H. CHEN AND M.-C. CHANG

N
N 1
00) =— ?log (2mo?) ~ 5,2 Z

+ ZZ [ ij logmij + (1 — [A];) log(1 — Wij)] '

i=1 j#i

Then we derive the Fisher information matrix. Note that [A],; are observed when the

data is obtained. We plug in the observed [A]ij in the computation of the information

matrix. Therefore, the resulting information matrix is given as below:

J(6) = —E [V*(0)]

T020(8)  0%4(0) 920(0) T
804% datdaz  Da104
9%0(0)  924(6) 920(0)
__E dazdaq da2 T Bandd
820(0)  9%0(0) 820(0)
L O¢p0aq dpoao e o¢? |
(% 0 ... 0 0 0 |
0 0 0 0
_ 0
0 0 oy 0 0
0 0 0 0 2§ 0
| 00 0 0 0 Y V2 L 1oy Tid (L= mig) |

where n; is the number of the experimental units which receive the ith treatments
(>3- n; = N). Thus, we have

m N
det(J(8)) = (H 02> X —g % > > Ly i (1 —mij)
i1 i=1 ji

- 02m+2 Hn, Z Z Liaygymia (1 = i)

1=1 j#i
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exp(sij + ¢Ly(ive(s))
o2m+2 Hnl ZZ > o )]2

=1 j#i 1 + exp(sm + d)Lt
2N
where n = (nq,...,nm),

m
Il) = Hni,
=1

and

Z Z exp(Sij + ¢Lt(i)t(j))
t(i)t 2
i=1 j#i ) ]‘ + eXp(Sij + ¢Lt(1)t(ﬂ))]

A constraint on n; is that n; > 0; that is, every treatment must be assigned to at least
one unit; otherwise det(J(@)) = 0. Since the graph has been observed, we can estimate
¢ by the maximum likelihood estimation. The likelihood equation of ¢ is given below:

Z ZL < o exp(sij + ¢Lt(i)t(j)) > =0
t(i)t Y 14 exp(si; + ¢Lt(i)t(j)) ‘

i=1 j#i

In general, I5(0) = ZZ 1 Z#Z mj(l — m;;) is not easily manageable since ¢

depends on different designs.

We consider maximizing det(J(€)) into two steps: maximizing I;(0;n) and maxi-
mizing I5(0). Let f(n) = I;(0;n) = [["; n;. We show that f(n) is Schur-concave by

using the Schur-Ostrowski criterion ( Ostrowski, 1952 ) as below:

(ni —nj) (if—i{) (ni — nj) ﬁ np (nj —mn;)

PFLJ
= —n;) H ny, <0
pFi,J
for all n € R™ holds for all 1 < i # j < m. Based on the theory of majorization,
a function f : R™ — R is Schur-concave if for any two vectors n, and n;, we have
f(n,) < f(np) given that n, majorizes n,. This indicates the components of n should
spread more evenly to get a large f(n). Consequently, we conclude that to maximize
I;(0;n), one needs to evenly spread the components of n, i.e., n;s should be as equal

as possible, resulting in a (nearly) balanced design.
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With regard to I(€), we derive the conditions according to the number of treat-

ments, m = 2 and m > 2:

m

1) m = 2: we classify m;; into + = J groups, denoted by pg;, where k£ =
lassify m;; T 9 d d b here k
min (¢(2),t(j)) and | = max (¢(¢),t(j)). Then the determinant det(J(8)) is

2 ~ ~
2N exp(l + oL exp(¢L
= ng -2 S (5L, p(l+¢ Akk:) . p(¢ A12) i
= |1+ exp(1+ L) | [1+ exp(dL12)]
— 4N = ng L2 L2
= 6 2 Z ( 9 ) kkDPkk + n1n2Liop12
Lk=1

I,(0;n) = ning,

and

2
L,(0) = > (%) Likprk + ninaLispra.
k=1

As previously noted, I5(0) is not easily tractable due to the estimation of ¢. We
discuss a simplified case with ¢ approaching zero in order to establish sufficient
conditions for optimal designs. In addition, we examine whether these conditions
hold for the general case where ¢ is estimated from the data. As ¢ approaches
zero, the determinant is

lim det(J(0)) o lim I;(0;n)I2(0)

¢—0 »—0

= mn2 {(7121>L%1p11 + (7122)1132]722 + nlngL%me}
eXp(l) ni\ 72 n 2 1 2 }
- N2 L 2) [, < I ‘
B {[1+exp(1)]2 [(2) 1t (2) 22} + 4n1n2 T

We have the following results:

(i) Consider how to spread Lq; and Lo to make I5(0) large given n; and na.
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1 T
(L11, Lo, L12) = | ¢, ¢, Qtr(A A) —2c (3)
and
1 T
(L11, Loz, L12) = ( ¢+ a,c —a, §tr(A A)—2c|, (4)
where a = —¢,—(c—1),...,—1,1,...,¢c — 1l,cand ¢ = 0,1,...,itr(ATA).

Substracting I(0) of (4) from that of (3) yields

O [ () - (et - (Be-a?. 6)

The condition that (5) is larger than zero is equivalent to

2,2
() == (e- L) + L =0,

—a* [(5) + (3)] +2ae [(3) - x

where y = ("?) — (}}) and z = ("}}) + (). Finally, we have

2+ 22z (2] 2
z z z z
Hence, evenly spreading L1; and Log leads to large I2(0) when the following

is satisfied:
ac (22,0),ify <0,ie.ng > ng;

z

a€(0,2%) ify > 0,ie.n; < ng.

Tz
We conclude that given nj,ne, without calculating I»(€), as long as the

design satisfies the above condition, it would result in a larger I5(8).

Consider how to spread L1; and Ljs to make I5(0) large given n; and no.

We compare
1 T
(LH, LQQ, L12) =1c itT(A A) —C, 0 (6)
and
1 T
(LH, LQQ, ng) =\|\c—a, itT(A A) —-cal, (7)

where a = 1,2,...,cand ¢ = 1,2, ..., 3tr(ATA). Substracting I»(8) of (7)
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from that of (6) yields

(e - (- - .

The condition that (8) is larger than zero is equivalent to

2 2

z z
_y<0/—) +7207

Yy

Y
where
exp(l)
Yy=——: + —ninsg
[1+ exp(1))? ()43
and

cexp(l)
L +exp(1))? ().

Finally, we have

%ZaZO.

Y

Hence, largest L1; leads to large I2(0) when it satisfies

— >a>0.
Yy

We conclude that given nq,ne, without calculating I»(€), as long as the

design satisfies the above condition, largest Li; would result in a larger

1,(6).

(2) m > 2: the determinant det(J(0)) is proportional to

m m m—1 m

n exp(1l+ &ka) exp(d;Li )
H”i Z(Qk)Lik N 7 T ZZ""”J’L?J' ——
i=1 k=1 [1 + exp(l + <Z>ka)} i=1 j>i [1 + exp(¢Lij;)

m—1 m

— an Z (ngk)Likpkk + Z ZninjL?jpij = 11(0; n)IQ(H),

=1 k=1 i=1 j>i

I;(6;n) = ﬁni;
=1
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and
m m—1 m
=D (3)Liwpwn + > > minLipis
k=1 =1 j>i

Similarily, we discuss a case where ¢ approaches zero. As ¢ approaches zero,

Pk =

exp(1) o1
fERSeyE and p;; = 7. We have
m m m—1 m
. exp(1)
lim det(J(@)) oc | | ni{ ———— E k—i— E g nin;L;
$—0 };[1 [1+exp(1)]* = p v

We have the following results:

(i)

Consider how to spread Lgis to make I5(0) largest given n;s. First, we

consider
1 m—1
(LU, LQQ, e ,me) = (Cl, Coyony itT(ATA) — Z C; — CL)

given L;js and 377! >_j%i Lij = a. Then comparing I5(6) can be simplified
to only comparing

(%) Lk (9)

k=1

Let g(Lrk) = ()L3,. The g(Lgg) is a convex function defined on a real
interval since g”(Lki) = 2("y) > 0. By the theory of majorization, (9) is
Schur-conver, and (9) reaches a maximum when Ly attains the maximum,
where ny = max(ni,...,ny). For example, if n; is the largest among n;s,

then (L11, Log, ..., Linm) = (%tr(ATA) —a,0,... ,O) makes I(0) largest.

Consider how to spread L;js to make Iy(0) largest given n;s. First, we

consider
1 m—1 m
T
(L2, L13s - oo, Lin—1,m) = | c12,¢13, - - - itr (ATA) =D "> ej—a
i=1 j>i

given Lygs and Y ;" Lgr = a. Then comparing I5(0) can be simplified to
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only comparing

m—1 m

> > minL. (10)

i=1 j>i
Let g(Lij) = ninjL%j. Then g(L;;) is a convex function defined on a real
interval since ¢”(L;j) = 2n;n; > 0. By the theory of majorization, (10) is
Schur-convex, and (10) reaches a maximum when L;; attains the maximum,
where n;jn; = max(ning,...,nm—1ny). For example, if n; and ny are the
first two largest among n;s, then (L12, L13, ..., Lin—1m) = (%tT(ATA) —a,0,
..,0) makes I»(0) largest.

We summarize the results above in a theroem as follows.

Theorem 1. Given det(J(0)) = I1(0;n)I2(0), to mazimize I,(0;n), the treatments
should be evenly spread; that is, n;s should be as equal as possible, resulting in a (nearly)

balanced design. With respect to maximizing I2(0), we provide two conditions:

(i) Given n;s, Lijs (i # j) and 221_11 > 7% Lij being fized, I5(0) reaches a mazimum

when Ly attains the mazimum with k = {1 <1 <m:n; = max(ni, na, ...,nm) }.

(ii) Given n;s, Lgks and Y, Lii being fized, 12(0) reaches a mazimum when L;;
attains the maximum with (i,7) = {1 <1 < s < m : nyns = max(ning, n1ns,

ey Mm—1Mm) }-

Calculating det(J(8)) for all designs can be prohibitive. Theorem 1 provides a set
of sufficient conditions for a design to be D-optimal. The computational cost of these
conditions is much lower than computing the determinant of J(@). The numerical study

in Section 4 shows that the designs satisfying these conditions tend to perform well.

4. Numerical Results with Real Applications

For an N-node graph and m treatments, there are m” designs in total. For a small
network, we can completely search for all designs and calculate the values of the design
criteria. However, exhaustive search incurs a large computational cost. It becomes

prohibitive for a large-scale network or numerous treatments. Parker, Gilmour, and



OPTIMAL DESIGNS ON UNDIRECTED NETWORK STRUCTURES FOR
NETWORK-BASED MODELS 15

Figure 1: Network Structure for a Singles Mixer.

Schormans (2017) mentioned that we can reduce the size of the search area in two
ways: the symmetry of the labels and the symmetry in the graph. Hence, we use these
two techniques to reduce computation. In the following, we provide the results for
m = 2, while those for m = 3 are given in the appendix. For each given network, the

Ly()e(j)s can be computed once a treatment allocation is assigned.

4.1 m =2 with ¢ — 0

In Section 3.2, we derive theoretical results for m = 2 as ¢ approaches zero. Here,
we examine numerical results by four types of graphs: complete bipartite graph, cycle
graph, path graph, and the second example in Parker, Gilmour, and Schormans (2017)
(also in Chang, Phoa, and Huang (2021)). Except for the last graph, we also provide

real applications.

Scenario 1. Complete Bipartite Graph

A complete bipartite graph is a special case of bipartite graphs where each unit in
the first subset is connected to those in the other subset.

For instance, when people participate in the singles mixer, they will receive a list of
basic contact information of the opposite gender from the marriage service corporation,
including the name, occupation, horoscope, and blood type. The contact information
will be exchanged between members according to their own wishes. Hence, these partic-
ipants constitute a social network, which has a complete bipartite structure; see Figure
1. If the marriage service corporation wants to distribute advertisements for their so-

cial activities to those who are willing to socialize, the issue of treatment assignment
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Figure 2: Complete Bipartite Graph with N = 8.

Table 1: Nonisomorphic Designs for Scenario 1 as ¢ — 0.

Treatment assignment | Lij;  Loo L1z | I;(6;n) I,(0) | I,(0;n)Iy(0)
(2,2,2,2,2,2,2,2} 0 16 0 0 2818.63 0.00
{1,2,2,2,2,2,2,2} 0 12 4 7 1245.11 8715.76
(1,1,2,2,2,2,2,2} 0 8 12 761.50 9137.94
{1,2,2,2,1,2,2,2} 1 6 12 694.16 8329.92
{1,1,2,2,1,2,2,2} 2 8 15 626.28 9394.19
{1,1,1,2,2,2,2,2} 0 12 15 1142.92 17143.74
{1,1,1,1,2,2,2,2} 0 0 16 16 2048.00 32768.00
(1,1,2,2,1,1,2,2)} 4 4 8 16 587.50 9399.98
{1,1,1,2,1,2,2,2} 3 310 16 842.47 13479.49

matters. The treatments can be different kinds of advertisements, and the response
can be the number of clicks on the advertisement page.

We illustrate this scenario via a simple example with eight units as in Figure 2.

Let {t(1),...,t(N)} be the set of treatments on units 1 to N. We find nine non-
isomorphic designs shown in Table 1. The blue one corresponds to the largest I5(8),
but it does not involve the first treatment. The red one corresponds to the D-optimal
design. The design with the largest Lio is D-optimal, which is supported by Theorem
1.

Scenario 2. Cycle Graph

A cycle graph is a graph that the vertices are connected in a closed chain, and the

number of vertices equals the number of edges. All vertices have the degree two; that
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Figure 3: The Floor Plan of National Palace Museum.
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Figure 4: The Floor Plan of Tainan City Zuojhen Fossil Park.

is, every vertex has exactly two edges linked with it.

The floor plan of the museum can be realized as a cycle network. The museum
attaches great importance to the layout of works to make the best use of storage space
and allow visitors to enjoy the works as comfortably and completely as possible. Take
National Palace Museum and Tainan City Zuojhen Fossil Park as examples. See Figure
3 and Figure 4 for illustration. They use a forced-route design to guide customers to
travel the entire predetermined route. If people come here to see exhibitions, they will
follow the same route most of the time. From a commercial point of view, the museum
tries to solve the following problems: how to decide the position of the works or theme

introductions in the route, so as to promote the activities to the maximum extent?
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Figure 5: Cycle Graph with N = 8.

Table 2: Nonisomorphic Designs for Scenario 2 as ¢ — 0.

Treatment assignment | Lyy Lo Lo | I1(6;n) I2(60) | 1,(0;n)Ix(0)
{2,2,2,2,2,2,2,2} 0 8 0 0 704.66 0.00
{1,2,2,2,2,2,2,2} 0 6 2 7 311.28 2178.94
{1,1,2,2,2,2,2,2} 1 5 2 12 171.85 2062.23
{1,2,1,2,2,2,2,2} 0 4 4 12 190.37 2284.49
{1,1,1,2,2,2,2,2} 2 4 2 15 97.64 1464.52
{1,1,2,1,2,2,2,2} 1 3 4 15  156.57 9348.55
{ ,2, ,2,1,2,2,2) o 2 6 15 285.73 4285.93
{1, ,1,2,2,2,2} 3 3 2 16 74.47 1191.49
(1,1,1,2,1,2,2,2} 2 2 4 16 146.88 2350.00
{1, ,2,1,2,2} 1 1 6 16 292.72 4683.50
{ ,2, ,2,1,2}) o 0 8 16 512.00 8192.00

The number of views by the customers can be used as a response. We regard each
work /type of showroom as a node and connect adjacent works/showrooms based on a
one-way path layout. We define the area in front of the entrance and exit as the same

node, so this path is a cycle graph.

In this scenario, we illustrate a simple example with eight units as in Figure 5. We
have eleven nonisomorphic designs shown in Table 2. The result is similar to that of

Scenario 1. The design with the largest Lio is D-optimal, supported by Theorem 1.
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Figure 6: The Floor Plans of IKEA.

Scenario 3. Path Graph

A path graph is a walk with all different units and edges. The difference between
path graphs and cycle graphs is that the first unit is connected with the last unit in
cycle graphs.

As we mentioned in the previous scenario, the layout of facilities plays an impor-
tant role in operations for exhibitions. It also works for shopping malls, which may
affect customer purchases. Traditional retail stores usually allow customers to navigate
directly to any part, but some stores like IKEA use a path to guide customers to every
area in the store; see Figure 6. IKEA’s layout is a one-way path system that guides
customers from the entrance to the checkout area through different parts. Suppose
we have two posters about recruiting new members with two-dimensional QR codes
attached, and each part of the store has one of them. The store owner may want to
decide the placement of two different posters effectively and explore which version of

the poster is more attractive.
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o

Figure 7: Path Graph with N = 8.

o

0\

Table 3: Nonisomorphic Designs for Scenario 3 as ¢ — 0.

Treatment assignment | Lyy Lo Lo | I1(6;n) I2(60) | 1,(0;n)Ix(0)
(2,2,2,2,2,2,2,2) o 7 0 0 539.50 0.00
{1,2,2,2,2,2,2,2} 6 0 1 7 300.78 2105.44
(2,1,2,2,2,2,2,2} 5 0 2 7 220.44 1543.10
{1,2,2,2,2,2,2,1} 0o 5 2 12 171.46 2057.51
{1,1,2,2,2,2,2,2} 1 5 1 12 153.85 1846.23
(2,1,2,1,2,2,2,2} 0o 3 4 12 149.09 1789.02
{1,2,1,2,2,2,2,2} 0 4 3 12 148.37 1780.49
{2,1,1,2,2,2,2,2} 1 4 2 12 118.77 1425.20
{2,1,2,1,2,1,2,2} 0 1 6 15 273.93 4108.98
{1,2,1,2,1,2,2,2} | 0 2 5 15 203.23 3048.98
{1,2,1,2,2,2,2,1} 0 3 4 15 155.39 9330.85
{2,1,1,2,1,2,2,2} 1 2 4 15 136.91 2053.63
{1,1,2,1,2,2,2,2} 1 3 3 15 104.07 1561.05
{1,1,2,2,2,2,2,1} 1 4 2 15 94.10 1411.43
{1,1,1,2,2,2,2,2} 2 4 1 15 75.14 1127.02
(2,1,1,1,2,2,2,2} 2 3 2 15 70.11 1051.63
{1,2,1,2,1,2,1,2} 0 0 7 16 392.00 6762.00
(2,1,1,2,1,2,1,2} 1 0 6 16 290.36 4645.75
{1,1,2,1,2,1,2,2} 1 1 5 16 204.72 3275.50
{2,1,1,1,2,1,2,2} 2 1 4 16 139.80 92236.75
{1,1,1,2,1,2,2,2} 2 2 3 16 90.88 1454.08
(2,1,1,1,1,2,2,2} 3 2 2 16 62.67 1002.74
{1,1,1,1,2,2,2,2} 33 1 16 50.47 807.49
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Similarly, we illustrate a path graph with eight units as in Figure 7. We have
twenty-three nonisomorphic designs shown in Table 3. The D-optimal design has the

largest Li2, supported by Theorem 1.

Scenario 4. FExzample 2 in Parker, Gilmour, and Schormans

(2017)

The graph in Figure 8 is an example discussed in Parker, Gilmour, and Schormans
(2017). This network has ten units connected by a relationship with the following

adjacency matrix:

00001O0O01O0°1
0011001111
0101001010
0110011111
A 10 000O0O0O0OT10O0
0001 001O0O00QO0
0111010001
1101000001
0111100001
110100111 0

On account of the unsymmetry in the graph, we choose not to show all nonisomor-
phic designs in Table 4. We list the designs whose I5(6) are larger than that of the
D-optimal design. In Table 4, we observe the same results as the previous scenarios. On
the other hand, we compare the results with Parker, Gilmour, and Schormans (2017)
and Chang, Phoa, and Huang (2021). See Table 5 for details. With respect to the

criterion we propose, the design chosen in this article is better.

4.2 m = 2 with estimated ¢

In this section, ¢ is estimated by the maximum likelihood estimation. It leads
to different pi; and determinants for different designs. Through simulating the same
scenarios as in Section 4.1, different results happen from those under ¢ approaching

Zero.
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Figure 8: Example 2 in Parker, Gilmour, and Schormans (2017).

Table 4: Optimal Designs for Scenario 4 as ¢ — 0.

Treatment assignment Ly Ly Lo | I1i(6;n) I5(0) | 1,(0;n)I»(0)
(2,2,2,2,2,2,2,2,2,2} 0 22 0 0  8564.42 0.00
(2,2,2,2,2,1,2,2,2,2} 0 20 2 9 5680.42 51123.81
(2,2,2,2,1,2,2,2,2,2} 0 20 2 9 5680.42 51123.81
(1,2,2,2,2,2,2,2,2,2} o 19 3 9 5150.84 46357.54
{2,2,2,2,2,2,2,1,2,2} 0 18 4 9  4658.56 41927.07
(2,2,1,2,2,2,2,2,2,2} 0 18 4 9 4658.56 41927.07
{2,2,2,2,2,2,2,2,1,2} 0 17 5 9  4203.60 37832.41
(2,2,2,2,2,2,1,2,2,2} | 0 17 5 9 4203.60 37832.41
(2,2,2,2,2,2,2,2,2,1} 0o 16 6 9 3785.95 34073.56
{2,1,2,2,2,2,2,2,2,2} 0 16 6 9 3785.95 34073.56
(2,2,2,1,2,2,2,2,2,2} o 15 7 9 3405.61 30650.52
{2,2,2,2,1,1,2,2,2,2} 0 18 4 16 3695.33 59125.23
(1,2,2,2,1,2,2,2,2,2} 1 18 3 16 3639.72 58235.52
{1,2,2,2,2,1,2,2,2,2} 0 17 5 16 3381.97 54111.48
(2,2,1,2,1,1,2,1,2,1} 1 5 16 25 3302.24 82555.96
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Table 5: Comparison in Optimal Designs for Scenario 4 as ¢ — 0.

This article

Treatment assignment Liy Ly Lig | 11(6;n) I,(0) I,(0;n)Iy(0)
(2,2,1,2,1,1,2,1,2,1} | 1 5 16 25 3302.24 |  82555.96

Parker, Gilmour, and Schormans (2017)

Treatment assignment L11 L22 L12 11(0; Il) 12(9) 11(0; Il)IQ(G)
{1,1,2,2,2,1,2,1,2,1} | 5 6 11 25 1752.37 | 43809.16
{1,2,1,2,1,2,2,1,2,1} | 4 7 11 25 1768.10 44202.39

Chang, Phoa, and Huang (2021)

Treatment assignment L11 L22 L12 11(0; Il) 12(9) 11(0; Il)IQ(G)
{2,1,2,2,1,2,2,1,1,1} | 6 5 11 25 1752.37 |  43809.16
{2,1,2,2,2,1,1,1,2,1} | 6 5 11 25 1752.37 43809.16

Scenario 1. Complete Bipartite Graph

For the scenario of the complete bipartite graph, we show the nonisomorphic designs
in Table 6. The red one represents the optimal design in Section 4.1. The orange one
represents the optimal design for estimated ¢. The range of é is from —0.055 to 1.223.
We find that the optimal design under ¢ approaching zero is the worst in this condition;

since qg = 1.223 causes p12 = 1, the determinant is zero.
Scenario 2. Cycle Graph
In this case, we present the results in Table 7. The range of QAS is from —0.505 to 0.

The optimal design in Section 4.1 is also optimal here.

Scenario 3. Path Graph

In this scenario, we present the 23 nonisomorphic designs in Table 8. The range of

¢ is from —0.649 to —0.036. Similar to Scenario 2, the optimal design for ¢ approaching

zero is also optimal for estimated ¢.
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Table 6: Nonisomorphic Designs for Scenario 1 under é = MLE.

Treatment assignment Ly Loo Lo qAﬁ P11 D22 P12
{2,2,2,2,2,2,2,2} 0 16 0 [ —0.045 | 0.571  0.731  0.500
{1,2,2,2,2,2,2,2} 0 12 4 | —0.055 | 0.731 0.585  0.446
{1,1,2,2,2,2,2 2} 0 8 8 —0.020 | 0.731  0.699  0.460
{1,2,2,2,1,2,2,2} 1 9 6 | —0.047 | 0.722 0.640  0.429
{1,1,2,2,1,2,2,2} P 6 8 | —0.014 | 0.726 0.715  0.473
{1,1,1,2,2,2,2,2}
{1,1,1,1,2,2,2,2} 0 0 16 1.223 | 0.731  0.731  1.000
{1,1,2,2,1,1,2,2} 4 4 8 | —0.011 | 0.723 0723  0.479
{1,1,1,2,1,2,2,2} 3 3 10 0.028 | 0.747  0.747  0.569
Treatment assignment I,(0;n) I,(0) I,(0;n)Iy(0)
{2,2,2,2,2,2,2,2} 0 3510.86 0.00
{1,2,2,2,2,2,2,2} 7 1523.32 10662.56
{1,1,2,2,2,2,2,2} 12 785.89 9430.62
{1,2,2,2,1,2,2,2} 12 722.19 9266.55
{1,1,2,2,1,2,2,2} 15 630.15 9452.29
{1,1,1,2,2,2,2,2}
{1,1,1,1,2,2,2,2} 16 0.00 0.00
{1,1,2,2,1,1,2,2} 16 588.05 9408.79
{1,1,1,2,1,2,2,2} 16 825.40 13206.36
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Table 7: Nonisomorphic Designs for Scenario 2 under qg = MLE.
Treatment assignment Ly Loo Lo qAS P11 D22 P12
{2,2,2,2,2,2,2,2} 0 8 0 | —0.240 | 0.286  0.731  0.500
{1,2,2,2,2,2,2 2} 0 6 2 | =0.325 | 0.731  0.279  0.343
{1,1,2,2,2,2,2 2} 1 5 2 | —0.380 | 0.650 0.289  0.319
{1,2,1,2,2,2,2,2} 0 4 4 | —0.368 | 0.731 0.384  0.187
{1,1,1,2,2,2,2,2} 2 4 2 | —0.455 | 0.523 0.306  0.287
{1,1,2,1,2,2,2,2} 1 3 4 | —0.392 | 0.648 0.456 0.173
{1,2,1,2,1,2,2,2} 0 2 6 | —0.145 | 0.731  0.670  0.295
{1,1,1,1,2,2,2,2} 3 3 2 | —0.505 | 0374 0.374  0.267
{1,1,1,2,1,2,2,2} 2 2 4 | —0.399 | 0.550  0.550  0.169
{1, ,2,1,2,2} 1 1 6 | —0.135 | 0.704 0.704  0.308
{1,2, ,2,1,2} 0 0 8 0.000 | 0.731  0.731  0.500
Treatment assignment I,(0;n) I,(0) I,(0;n)Iy(0)
{2,2,2,2,2,2,2,2} 0 731.43 0.00
{1,2,2,2,2,2,2,2} 7 317.00 2218.98
{1,1,2,2,2,2,2,2} 12 175.51 2106.17
{1,2,1,2,2,2,2,2} 12 171.83 2061.95
{1,1,1,2,2,2,2,2} 15 98.53 1478.00
{1,1,2,1,2,2,2,2} 15 114.62 1719.31
{1,2,1,2,1,2,2,2} 15 242.49 3637.32
{1, ,1,2,2,2,2} 16 75.61 1209.74
{1, ,2,1,2,2,2} 16 95.53 1528.44
{1, ,2,1,2,2} 16 250.48 4007.67
{1,2, ,2,1,2} 16 512.00 8192.00

)
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Table 8: Nonisomorphic Designs for Scenario 3 under qg = MLE.

~

Treatment assignment Ly Loo Lo 10} P11 D29 P12
{2,2,2,2,2,2,2,2} 0 7 0 | —0.300 | 0.250 0.731  0.500
{1,2,2,2,2,2,2 2} 6 0 1] —-0.332 | 0270 0.731  0.418
{2,1,2,2,2,2,2,2} 5 0 2 | —0434 | 0.237 0.731  0.296
{1,2,2,2,2,2,2,1} 0 5 2 | —0.384 | 0.731 0.285  0.317
{1,1,2,2,2,2,2, 2} 1 5 1 | —0.383 | 0.286 0.650  0.406
{2,1,2,1,2,2,2 2} 0 3 4 | —0.457 | 0408 0.731  0.138
{1,2,1,2,2,2,2,2} 0 4 3 | —0465 | 0.297 0.731  0.199
{2,1,1,2,2,2,2 2} 1 4 2 | —0.540 | 0.238 0.613  0.253
{2,1,2,1,2,1,2,2} 0 1 6 | —0.116 | 0.708 0.731  0.332
{1,2,1,2,1,2,2,2} 0 2 5 | —0.252 | 0.621  0.731  0.221
{1,2,1,2,2,2,2,1} 0 3 4 | =037 | 0731 0469  0.182
{2,1,1,2,1,2,2,2} 1 2 4 | —0.448 | 0.526  0.635  0.143
{1,1,2,1,2,2,2/2} 1 3 3 | —0.560 | 0.337 0.608 0.157
{1,1,2,2,2,2,2 1} 1 4 2 | —0493 | 0.624 0.274 0.272
{1,1,1,2,2,2,2,2} 2 4 1 | —0.460 | 0.302 0.520 0.387
{2,1,1,1,2,2,2,2} 2 3 2 | —0.661 | 0.272 0.420 0.210
{1,2,1,2,1,2,1,2} 0 0 7 | —0.036 | 0.731  0.731  0.438
{2,1,1,2,1,2,1,2} 1 0 6 | —0.110 | 0.731 0.709  0.341
{1,1,2,1,2,1,2,2} 1 1 5| —0.236 | 0.682 0.682 0.235
{2,1,1,1,2,1,2,2} 2 1 4 | —0.405 | 0.644  0.547  0.165
{1,1,1,2,1,2,2,2} 2 2 3 | —0.621 | 0.440 0.440 0.134
{2,1,1,1,1,2,2,2} 3 2 2 | —0.649 | 0.426 0.279 0.214
{1,1,1,1,2,2,2 2} 3 3 1 | —0.522 | 0362 0.362 0.372
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Treatment assignment I,(0;n) I,(0) I,(0;n)Iy(0)
{(2,2,2,2,2,2,2,2} 0 514.50 0.00
{1,2,2,2,2,2,2,2} 7 301.73 2112.10
{(2,1,2,2,2,2,2,2} 7 201.41 1409.86
{1,2,2,2,2,2,2,1} 12 173.69 2084.25
{1,1,2,2,2,2,2,2} 12 159.54 1914.48
(2,1,2,1,2,2,2,2} 12 110.98 1331.75
(1,2,1,2,2,2,2,2) 12 134.70 1616.37
{2,1,1,2,2,2,2,2} 12 105.80 1269.54
{2,1,2,1,2,1,2,2} 15 243.83 3657.49
{1,2,1,2,1,2,2,2} 15 147.91 2218.66
(1,2,1,2,2,2,2,1} 15 116.39 1745.77
{(2,1,1,2,1,2,2,2} 15 80.13 1201.98
{1,1,2,1,2,2,2,2} 15 77.41 1161.13
{1,1,2,2,2,2,2,1} 15 88.87 1333.06
{1,1,1,2,2,2,2,2} 15 80.54 1208.10
(2,1,1,1,2,2,2,2} 15 61.45 921.68
{1,2,1,2,1,2,1,2} 16 385.88 6174.00
(2,1,1,2,1,2,1,2} 16 261.39 4182.27
(1,1,2,1,2,1,2,2)} 16 149.09 9385.47
{2,1,1,1,2,1,2,2} 16 85.22 1363.45
{1,1,1,2,1,2,2,2} 16 57.14 914.18
{2,1,1,1,1,2,2,2} 16 55.04 880.60
(1,1,1,1,2,2,2,2} 16 57.38 918.10
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Table 9: Optimal Designs for Scenario 4 under (5 = MLE.

Treatment assignment L1 Loy Lo 10}
{2,2,2,2,2,2,2,2,2,2} 0 22 0 | —0.047
{2,2,2,2,2,1,2,2,2,2} 0 20 2 | —0.040
{1,2,2,2,2,2,2,2,2,2} 0 19 3 | —0.048
{2,2,2,2,2,2,2,1,2,2};{2,2,1,2,2,2,2,2,2 2} 0 18 4 | —0.056
{2,2,2,2,2,2,2,2,1,2}:{2,2,2,2,2,2,1,2,2,2} 0 17 5 | —0.063
{2,2,2,2,2,2,2,2,2,1};{2,1,2,2,2,2,2,2,2,2} 0 16 6 | —0.070
{2,2,2,1,2,2,2,2,2,2} 0 15 7 | —0.076
{2,2,2,2,1,1,2,2,2,2} 0 18 4 | —0.030
{1,2,2,2,1,2,2,2,2,2} 1 18 3 | —0.029
{1,2,2,2,2,1,2,2,2 2} 0 17 5 | —0.039
{2727272727 727 72’2};{2’27272’ 7272’ 7272};

0 16 6 | —0.047
{2727 72727 72727272};{2727 727 7272727272}
{2>27272) 7272)27 72}7{ 5272725272725 7272}7

1 16 5 | —0.050
{2?27272727 ) 727272}
{27272727 7272727 72};{27272727 727 727272};

0 15 7 | —0.055
{ 727 ’27272’27272’2}
{2,2,2,2,2,1,2,2,2,1};{2,2,2,2,1,2,2,2,2, 1 };
{ )27272)27272)27 72}7{2727 727272727 7272}7

0 14 8 | —0.060
{ ?27272?2727 727272};{2’ 7272’27 72’27272};
{27 72727 72a2727272}
{27 9 727 9 7272727 }
{2,2,1,2,1,1,2,1,2,1} 1 5 16 0.023
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Treatment assignment P11 P22 P12
{2,2,2,2,2,2,2,2 2 2} 0.731 0.489 0.500
{2,2,2,2,2,1,2,2,2 2} 0.731 0.549 0.480
{1,2,2,2,2,2,2,2,2,2} 0.731 0.523 0.464
{2,2,2,2,2,2,2,1,2,2};{2,2,1,2,2,2,2,2, 2,2} 0.731 0.500 0.445
{2,2,2,2,2,2,2/2 1,2};{2,2,2,2,2,2,1,2,2,2} 0.731 0.482 0.422
{2,2,2,2,2,2,2,2,2,1};{2,1,2,2,2,2,2,2, 2,2} 0.731 0.470 0.396
{2,2,2,1,2,2,2,2, 2 2} 0.731 0.464 0.37
{2,2,2,2,1,1,2,2,2 2} 0.731 0.615 0.470
{1,2,2,2,1,2,2,2,2,2} 0.725 0.616 0.478
{1,2,2,2,2,1,2,2,2 2} 0.731 0.584 0.451
{272’27272’ 727 ’272};{272’2?27 ’2?27 ’2?2};

0.731 0.560 0.429
{2727 72727 72727272};{2727 727 7272727272}
{23252727 5272727 72}7{ 7272)27272)27 72)2}a

0.721 0.550 0.438
{272?27272? 9 727272}
{27272727 7272727 72};{27272727 727 727272};

0.731 0.544 0.405
{ 72a 7272a27272a272}
{2,2,2,2,2,1,2,2,2,1};{2,2,2,2,1,2,2,2,2, 1 };
{ 727272727272727 72}>{2727 )27272727 7272}a

0.731 0.539 0.382
{ 72’2?272’27 72’272};{27 7272727 72727272};
{27 72727 7272727272}
{27 9 727 9 7272727 }
{2,2,1,2,1,1,2,1,2,1} 0.736 0.753 0.592
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Treatment assignment I I II,
{2,2,2,2,2,2,2,2,2,2} 0 10884.62 0.00
{2,2,2,2,2,1,2,2,2,2} 9 7148.50 64336.53
{1,2,2,2,2,2,2,2,2,2} 9 6525.00 58725.00
{2,2,2,2,2,2,2,1,2,2};{2,2,1,2,2,2,2,2,2 2} 9 5903.12 53128.06
{2,2,2,2,2,2,2,2,1,2};:{2,2,2,2,2,2,1,2,2,2} 9 5305.05 47745.45
{2,2,2,2,2,2,2,2,2, };{2, ,2,2,2,2,2,2,2,2} 9 4746.21 42715.93
{2,2,2,1,2,2,2,2,2,2} 9 4234.85 38113.66
{2,2,2,2,1,1,2,2,2,2} 16 4424.18 70786.84
{1,2,2,2,1,2,2,2,2,2} 16 4365.22 69843.55
{1,2,2,2,2,1,2,2,2 2} 16 4130.52 66088.27
{2727272727 727 7272};{2?272’27 72727 72’2};

16 3814.97 61039.48
{2727 72727 72727272};{2727 727 7272727272}
{27272727 72)2727 )2}a{ 7272727272727 7252}5

16 3745.92 59934.74
{2727272727 9y 7272?2}
{27272727 7272727 72};{27272727 727 727272};

16 3503.17 56050.69
{ 727 72727272727272}
{2,2,2,2,2,1,2,2,2,1};{2,2,2,2,1,2,2,2,2,1};
{ 7272727272)2727 )2}a{2727 727272727 7272}7

16 3210.87 51373.85
{ 72727272727 7272?2};{27 ?2’272? ’272?2’2};
{27 72727 72727272)2}
{27 9 727 9 7272727 }
{2,2,1,2,1,1,2,1,2,1} 25 3187.42 79685.50

Note. 11 = 11(0;11), 12 = 12(9), and 1112 = 11(0,11)12(0)
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Table 10: Comparison in Optimal Designs for Scenario 4 under qg = MLE.
This article
Treatment assignment L1 Loy Lo qg P11 D22 P12
{2,2,1,2,1,1,2,1,2,1} 1 5 16 0.023 | 0.736  0.753  0.592
Parker, Gilmour, and Schormans (2017)
Treatment assignment L1y Lo Lo (JB P11 P22 P12
{1,1,2,2,2,1,2,1,2,1} 5 6 11 | —0.041 | 0.689 0.680 0.388
{1,2,1,2,1,2,2,1,2,1} 4 7 11 | —0.036 | 0.702 0.678 0.402
Chang, Phoa, and Huang (2021)
Treatment assignment ‘ L1y Loo Lo ‘ qg ‘ D11 D22 P12
{2,1,2,2,1,2,2,1,1,1} 6 5 11 | —0.041 | 0.689 0.680 0.388
{2,1,2,2,2,1,1,1,2,1} 6 5 11 | —0.041 | 0.689 0.680 0.388
This article
Treatment assignment ‘ I,(0;n) I,(0) ‘ I,(0;n)Iy(0)
{2,2,1,2,1,1,2,1,2,1} ‘ 25 3187.42 ‘ 79685.50

Parker, Gilmour, and Schormans (2017)

Treatment assignment ‘ I,(60;n) I2(0) ‘ I,(0;n)I>(0)
(1,1,2,2,2,1,2,1,2,1} 25 1701.04 42526.00
{1,2,1,2,1,2,2,1,2,1} 25 1734.77 43369.27

Chang, Phoa, and Huang (2021)

Treatment assignment ‘ I,(0;n) I,(0) I,(0;n)Iy(0)
(2,1,2,2,1,2,2,1,1,1} 25 1701.04 42526.00
(2,1,2,2,2,1,1,1,2,1} 25 1701.04 42526.00
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Scenario 4. FExample 2 in Parker, Gilmour, and Schormans

(2017)

In this case, the optimal design in Section 4.1 is not optimal here; see Table 9.
However, we observe that via complete search, its determinant is very close to that
of the optimal design. Likewise, we compare the results with Parker, Gilmour, and
Schormans (2017) and Chang, Phoa, and Huang (2021) in Table 10. The design chosen
in this article is better.

From the four scenarios we discussed, we know that the conclusion in Section 4.1

might be not applicable when ¢ is estimated by the MLE.

5. Real Networks

The real networks are from https://sites.google.com/site/ucinetsoftwa
re/datasets. They are datasets in UCINET software Borgatti, Everett, and Free-
man(2002). In this section, we apply our theory to real networks and give the corre-

sponding optimal designs.

5.1 Teenage Friends and Lifestyle Study

This social network data were collected in the Teenage Friends and Lifestyle Study.
Friendship networks and substance use were recorded for a group of students in a school
in the West of Scotland. The data were recorded for three years, starting in 1995 and
ending in 1997. A total of 160 students took part in the study. The friendship networks
were formed by allowing the students to name twelve best friends.

Schools might be interested in the influence of different interventions for promoting
a healthy life among a group of students that knew each other socially, according to
their friendship network structure. Some students might be sent daily text messages
about healthy eating information, and the others might be sent a weekly magazine
of the disadvantage of consuming tobacco, alcohol and cannabis. In addition to the
effectiveness of the interventions, researchers were also interested in whether the mes-
sage/magazine sent to one student had an effect on other students that connected with

the original student in the social network. The treatment could be different daily text
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Figure 9: A Subset of the Friendship Network in a School in the West of Scotland.

messages about healthy eating information or weekly magazines of the disadvantage
of consuming tobacco, alcohol and cannabis. The response could be sale volumes of
tobacco, alcohol and cannabis.

The network shown in Figure 9 is a subset of the data. It has twelve units and

twenty edges connected as the following adjacency matrix:

011100O0O0O0O0GO0°TO
101 1000O01O0O0O0
110110001000
1110000O01O0O0O0
001 0001O011O00O0
AZOOOOOOOOOOll
000010011000
0000O0OO0O1O01T1O00O0
011110110000
000O0O1O0O0OT1TO0TO0OTG OGO
000O0O0O1O0O0O0OGO0OTO0T1
000O0OO0OT1O0O0OTO0OOTI1F®O

We assume there are two different daily texts. Then we present the optimal designs
in Table 11. The design with the largest Lis is D-optimal when ¢ approaches zero.

However, when ¢ is estimated by the MLE, the optimal design is another one.
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Table 11: Optimal Designs for Real Network 1 as ¢ — 0 and é = MLE.

¢—0

Treatment assignment L1t Los ILno 10) P11 D22 P12
{2,1,2,1,1,2,2,1,2,2,1,1} 2 3 15 0.00 | 0.731 0.731  0.500
, 1} 3 2 15 0.00 | 0.731 0.731  0.500

}

{727 7272727 727 ) 72
{2,1,2,1,1,1,2,1,2,2,2, 2 3 15 0.00 | 0.731 0.731 0.500
¢ = MLE
Treatment assignment ‘LH Los Lqo ‘ qZ; P11 P22 P12

{2,2,2,2,2,1,2,2,2,2,1,1} \ 3 17 0 \ —0.06 \ 0.691 0477 0.5

¢»—0
Treatment assignment I,(6;n) I(0) I,(6;n)Ix(0)
(2,1,2,1,1,2,2,1,2,2,1,1} 36 4126.68 148560.43
{1,2,1,2,2,2,1,2,1,1,2,1} 36 4126.68 148560.43
(2,1,2,1,1,1,2,1,2,2,2,1} 36 4126.68 148560.43
é = MLE
Treatment assignment ‘ I,(0;n) I(0) ‘ I,(60;n)I>(0)
(2,2,2,2,2,1,2,2,2,2,1,1} \ 927 5202.28 \ 140461.58

5.2 Friendship and Unionization in a Hi-tech Firm

The case is a small hi-tech computer firm that sells, installs, and maintains com-
puter systems. The network contains the friendship ties between the employees, which
were gathered by means of the question: Who do you consider to be a personal friend?
A few months later, employees tried to organize a union in the firm: they sought sup-
port among the employees to let the union have a say in the firm. According to the
friendship network structure, organizers want to know which slogan is more attractive
to their colleagues to join the union. The subjects might be sent proposals about join-

ing the union with different slogans. The response could be the number of clicks on
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Figure 10: A Subset of the Friendship Nework in a Hi-tech Computer Firm.

proposal links.

The network shown in Figure 10 is a subset of the data, with thirteen nodes and

thirty-eight edges connected as the following adjacency matrix:

(01 0110000100 0]
1001001011001
0000101011110
1100001001000
10100000O0OT1T1T1F0
0000000110101
A=[0111000111110
0000011011000
0110011101110
1111101110110
001011101101 °1
0010101011100
|01 00010000T10 0|

We assume there are proposals about joining the union with two different slogans.
Then we have the optimal designs under ¢ approaching zero and under ¢ estimated by

the MLE in Table 12. The optimal designs are the same, which have the largest Lis.
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Table 12: Optimal Designs for Real Network 2 as ¢ — 0 and é = MLE.

¢—0
Treatment assignment L11 L22 L12 QAS P11 D22 P12
{2,2,2,1,1,1,1,2,1,1,2,2,1} 8 4 26 | 0.00 | 0.731 0.731 0.500
{ ,2,2,2,1,1,1,2,1,1,2,2, } 8 4 26 | 0.00 | 0.731 0.731 0.500
é = MLE
Treatment assignment L1 Loy Lio <ZA5 P11 D22 P12
{2,2,2,1,1,1,1,2,1,1,2,2,1} 8 4 26 0.01 | 0.740 0.736 0.538
{1,2,2,2,1,1,1,2,1,1,2,2,1} 8 4 26 | 0.01 | 0.740 0.736 0.538
¢ —0
Treatment assignment ‘ I I LI,
{2,2,2,1,1,1,1,2,1,1,2,2,1} 42 14818.87 622392.40
{ ,2,2,2,1,1,1,2,1,1,2,2 } 42 14818.87 622392.40
¢ = MLE
Treatment assignment I I, I, I,
{2,2,2, , 111,21, 1,2,2, } 42 14724.23 618417.77
{1,2,2,2,1,1,1,2,1,1,2,2,1} 42 14724.23 618417.77

Note. Il = ]:1(0;1’1)7 IQ = 12(0), and 1112 = 11(0,1'1)12(0)

5.3 Discussion of Student Government

This network contains discussion relations among the eleven students who were
members of the student government at the University of Ljubljana in Slovenia. The
students were asked to point out with whom of their fellows they discussed matters
concerning the administration of the university informally. Within the parliament, stu-
dents have positions that convey official ranking: the prime minister, the ministers,
and the advisors. The student government is responsible for legislating and supervis-

ing various administrative affairs of student associations, such as funding. A student
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Figure 11: The Student Government Discussion Network.

wants to make the student government willing to provide more funds through distinct

proposals. The treatments could be distinct proposals. The response could be funds.

The network shown in Figure 11 has eleven units and thirty-six edges connected

as the following adjacency matrix:

01100100010
10111101110
11011111110
01101111001
011101110710

A=|11111011001
00111101101
01111110101
01100011001
11101000000

0001011110 0]

We assume a student provides three different activity proposals. Then we present
the optimal designs in Table 13. Similar to the previous examples, the design with
the largest L1 is D-optimal under the condition that ¢ approaches zero. However, the

optimal design is not suitable for the condition that ¢ is estimated by the MLE.
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Table 13: Optimal Designs for Real Network 3 as ¢ — 0 and é = MLE.

¢ —0
Treatment assignment L1 Loo L33 Lo L3 Los qg
{3,1,1,2,1,2,1,2,2,2,1} 6 4 0 22 2 2 | 0.00
¢ = MLE
Treatment assignment L11 L22 L33 L12 L13 L23 (]AS
{3,2,1,2,1,1,2,2,1,2,1} 6 6 0 20 2 2 | 0.05
{3,1,1,2,1,2,2,2,1,2,1} 6 6 0 20 2 2 | 0.05
{3,3,1,3,1,1,3,3,1,2,1} 6 0 6 2 20 2 | 0.05
¢ —0
Treatment assignment ‘ P11 D22 P33 P12 P13 P23 ‘ Il 12 ‘ 1112

{3,1,1,2,1,2,1,2,2,2 }‘0.73 0.73 0.73 0.50 0.50 0.50‘25 6274‘156862

é = MLE

Treatment assignment pi1 P2 p33 piz2 piz pes | h I L1
(3,2,1,2,1,1,2,2,1,2,1} | 0.79 0.79 0.73 0.75 0.53 0.53 | 25 4017 | 100415
{3,1,1,2,1,2,2,2,1,2,1} | 0.79 0.79 0.73 0.75 0.53 0.53 |25 4017 | 100415
(3,3,1,3,1,1,3,3,1,2,1} | 0.79 0.73 0.79 0.53 0.75 0.53 |25 4017 | 100415

Y

Note. 11 = Il(O;n), IQ = 12(0), and 1112 = Il(O,n)Ig(O)

6. Conclusion

This article studies optimal designs for experimental units with general network
structures. Different from the linear network effect model proposed by Parker, Gilmour,
and Schormans (2017) and Chang, Phoa, and Huang (2021), we propose a novel statis-
tical network-based model, more easily justified by the network literature. Our model
is an extension of network block models and NLR models, and incorporates the local
and global patterns of a network. We derive a theoretical result under the condition

¢ approaching zero, and provide sufficient conditions for optimal designs. In the nu-



OPTIMAL DESIGNS ON UNDIRECTED NETWORK STRUCTURES FOR
NETWORK-BASED MODELS 39

merical study, we consider common classes of graphs, such as bipartite, path, and cycle
networks, and a network in Parker, Gilmour, and Schormans (2017) and Chang, Phoa,
and Huang (2021). By the comparison in the numerical study, we find that the optimal
design under ¢ approaching zero might not be the same as that under ¢ estimated by
the maximum likelihood estimation. This shows that the global patterns of a network
play a role in determining optimal designs. Lastly, we discuss three real-world net-
works and show that our methods are not only applicable for specific graphs, but also

for general networks.

Studying optimal designs under ¢ estimated by the maximum likelihood estimation
is a challenging task. In addition, deriving a powerful testing method for the hypothesis
Hp : ¢ = 0 is crucial since Theorem 1 is derived under ¢ approaching zero. As pointed
out by a reviewer, we realize that the equation in (2) may not be able to mathematically
characterize the connection probabilities for a few nodes in very small-scale graphs. We

leave the above problems for future research.

Appendix

A.l. m=3 with ¢ =0

In Section 4.1, we have derived numerical results by four types of graphs under
m = 2. Here, we examine the numerical results for m = 3. When m = 3 and ¢ — 0,

p11 = p22 = p33 = 0.731 and p12 = p13 = p2g = 0.5.

Scenario 1. Complete Bipartite Graph

We illustrate the scenario of the complete bipartite graph via an example with
twelve units as in Figure 12. We show the top three designs in Table 14. The red one
represents the optimal design. The design with the largest Lio is D-optimal.

Scenario 2. Cycle Graph

We illustrate this scenario via an example with eleven units as in Figure 13. We
have the top three designs in Table 15. The design with the largest Loz, one of L;;, is
D-optimal.
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Figure 13: Cycle Graph with N=11.

Table 14: Selected Designs for Scenario 1 as ¢ — 0 and m = 3.

Treatment assignment LH L22 L33 L12 L13 L23 Il IQ 1112
{3,2,2,2,2,2,1,1,1,1,1,1} 0 0 0 30 6 0130 13608 | 408240
{3,3,3,3,3,2,2,1,1,1,1,1} 0 1 0 5 25 5|50 8063 | 403145
{3,3,2,2,2,2,1,1,1,1,1,1} 0 0 0 24 12 0|48 7776 | 373248

Note. 11 = 11(0; n), IQ = 12(0), and 1112 = 11(0; n)IQ(O)
Table 15: Selected Designs for Scenario 2 as ¢ — 0 and m = 3.
Treatment assignment L1 Loy Lsz Lig Lis Log | I I I,
{2,3,2,3,2,3,2,3,2,1,1} 1 0 0 2 0 8|40 660 | 26416
{3,2,1,2,1,2,1,2,1,2, 1} 0 0 0 9 1 1|25 1018 | 25438
{3,1,3,2,1,2,1,2,1,2,1} 0 0 0 7 3 1140 539 | 21560

Note. Il = 11(0;n), 12 = 12(0), and 1112 = Il(B,n)IQ(H)
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Figure 14: Path Graph with N=9.

Table 16: Selected Designs for Scenario 3 as ¢ — 0 and m = 3.

Treatment assignment | L1y Loo  Lss  Lio  Liz  Log I | ) I I,
{3,2,1,2,1,2,1,2,1} 0 0 0 7 1 1116 396 | 6336
{2,3,2,3,2,3,2,1,1} 1 0 0 2 0 6 | 24 232 | 5577
{2,3,2,1,2,1,2,1,1} 1 0 0 6 0 2 | 16 298 | 4774

Note. Il = 11(0;11), Ig = 12(9), and 1112 = Il(B,n)IQ(H)

Scenario 3. Path Graph

We illustrate a path graph with nine units as in Figure 14. We have the top three
designs in Table 16. The design with the largest Li5 is D-optimal.

Scenario 4. FExample 2 in Parker, Gilmour, and Schormans

(2017)

Similar to Section 4, the unsymmetry in the graph leads to numerous nonisomorphic
designs. Hence, we only compare the results with Chang, Phoa, and Huang (2021); see
Table 17. With respect to the criterion we propose, the design chosen in this article is

better. The D-optimal design has the largest Lqo.
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Table 17: Comparison in Optimal Designs for Scenario 4 as ¢ — 0 and m = 3.

This article

Treatment assignment ‘ L11 Loy Lss Lis L1z  Los ‘ I | ) ‘ LI,
{3,1,1,2,3,1,2,2,2,1} | 2 3 1 13 1 232 1403 | 44808

Chang, Phoa, and Huang (2021)

Treatment assignment ‘ L11 L22 L33 L12 L13 L23 ‘ Il 12 ‘ 1112
{1,2,3,3,2,3,1,1,2,1} 4 2 2 5 5 4136 419 | 15091
{1,2,3,1,2,3,3,1,2,3} 2 2 3 4 6 5|36 469 | 16872

Note. 11 = 11(9;11), IQ = 12(0), and 1112 = 11(9,11)12(0)

A.2. m = 3 with estimated ¢

In this section, we show the numerical results for the condition that ¢ is estimated
by the MLE and m = 3. Therefore, it results in different pg; and the determinants

given different designs.

Scenario 1. Complete Bipartite Graph

For the scenario of the complete bipartite graph, we show the optimal design in
Section A.1 and the top two designs in Table 18. The red one represents the optimal
design in Section A.1. The orange one represents the optimal design for ¢ estimated by
the MLE. The range of ¢ is from —0.05 to 2.93. We find that the optimal design when
¢ approaches zero is the worst in this condition; since gZ; = 2.93 causes p12 = p13 = 1,

the determinant is zero. This consequence is similar when m = 2.

Scenario 2. Cycle Graph

In this case, we show the top three designs in Table 19. The range of qg is from —0.88
to —0.03. The optimal design in Section A.1 is also D-optimal here. This consequence

is also similar when m = 2.

Scenario 3. Path Graph

In this scenario, we present the top three designs in Table 20. The range of gfg is

from —0.78 to —0.03. The D-optimal design is the same as that in Section A.1.
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Table 18: Selected Designs for Scenario 1 under ¢ = MLE and m = 3.
Treatment assignment L1y Loo L33 Lo L3 Los QZA)
{3,2,2,2,2,2,1,1,1,1,1, 0 0 0 30 6 0 2.93
{372727 272’ 727 ) Y 9 )
{3,2,2,2,2,1,3,2,1,1,1, 4 4 1 17 5 5 0.02
Treatment assignment P11 P22 P33 P12 P13 P23 Il 12 1112
{3,2,2,2,2,2,1,1,1,1,1, 0.73 0.73 0.73 1.00 1.00 0.50 |30 0 0
{3727 27 2727 727 ) ) 7 )
{3,2,2,2,2,1,3,2,1,1,1, 0.75 0.75 0.74 0.60 0.53 0.53 |50 3845 | 192244
Note. 11 = 11(0;1‘1), IQ = 12(9), and 1112 = 11(0,1‘1)12(0)
Table 19: Selected Designs for Scenario 2 under qg = MLE and m = 3.
Treatment assignment L11 L22 L33 L12 L13 L23 (;AS
{2,3,2,3,2,3,2,3,2,1,1} 1 0 0 2 0 8 —-0.07
{3,2,1,2,1,2,1,2,1,2,1} 0 0 0 9 1 1 —0.08
{3,1,3,2,1,2,1,2,1,2,1} 0 0 0 7 3 1 —-0.12
Treatment assignment P11 P22 P33z pi2 piz pas | L Do LI,
{2,3,2,3,2,3,2,3,2,1,1} | 0.72 0.73 0.73 0.47 0.50 0.37 | 40 616 | 24641
{3,2,1,2,1,2,1,2,1,2,1} [ 0.73 0.73 0.73 0.33 0.48 0.48 | 25 899 | 22481
{3,1,3,2,1,2,1,2,1,2,1} [ 0.73 0.73 0.73 0.30 0.41 0.47 | 40 458 | 18334

Note. 11 = 11(0, 1’1), 12 = 12(0), and 1112 = Il (0, 1’1)12(0)
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Table 20: Selected Designs for Scenario 2 under ¢ = MLE and m = 3.

Treatment assignment Ly Loo L33 Lo L3 Los ¢
{3,2,1,2,1,2,1,2,1} 0 0 0 7 1 1 —0.07
{2,3,2,3,2,3,2,1,1} 1 0 0 2 0 6 —0.03
{3,1,3,2,1,2,1,2,1} 0 0 0 5 3 1 —0.12

Treatment assignment | p11 pa2  p3z pi2 pi3z ps | L Lo | Lilo
{3,2,1,2,1,2,1,2,1} | 0.73 0.73 0.73 0.38 048 048 | 16 372 | 5944
(2,3,2,3,2,3,2,1,1} | 072 0.73 0.73 048 050 045 | 24 230 | 5529
(3,1,3,2,1,2,1,2,1} | 0.73 073 073 0.36 041 047 | 24 176 | 4225

Note. Il = 11(0;11), IQ = 12(0), and 1112 = Il(G,n)IQ(O)

Table 21: Comparison in Optimal Designs for Scenario 4 under (;3 =MLE and m = 3.

This article

Treatment assignment L1 Los L33 Lo L3 Los I I,

{27 s Ly s 73a27272a } P11 D22 P33 P12 P13 D23 (Z) 1112

Chang, Phoa, and Huang (2021)

Treatment assignment Lll L22 L33 L12 L13 L23 Il 12
4 2 2 ) 5) 4 36 414
{ 72737372737 ) 727 } P11 D22 P33 P12 P13 P23 d; 1112

0.67 070 070 042 042 0.43 | —0.07 | 14913

Treatment assignment LH L22 L33 L12 L13 L23 Il 12
2 2 3 4 6 5 36 462
{1,2,3,1,2,3,3,1,2,3} | pin p2  p3ss  pi2 P13 D23 ¢ L

0.71 0.71 0.69 045 042 0.44 | —0.05 | 16646

Note. Il = 11(0, n), 12 = 12(9), and 1112 = 11(07 H)IQ(G)
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Scenario 4. FExample 2 in Parker, Gilmour, and Schormans
(2017)

In this example, the optimal design in Section A.1 is not optimal here. See Table
21 for details. Likewise, we compare the results with Chang, Phoa, and Huang (2021)
in Table 21. The design chosen in this article is better.

From the four scenarios we discussed, we derive a similar conclusion in Section 4.
Only the second scenario and the third scenario have the same optimal designs for two

conditions. That is, the results for ¢ approaching zero may be not applicable to ¢

estimated by the MLE.
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