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ABSTRACT

With the rapid growth of social network services, network-related studies have

become a burgeoning research area. Allocating a treatment to a unit affects the unit as

well as its neighbors, simultaneously resulting in a treatment effect and a network effect.

In the literature of experimental designs, Parker, Gilmour, and Schormans (2017) and

Chang, Phoa, and Huang (2021) both adopted a linear network effect model to design

experiments on general networks. However, this model has not been heavily recognized

yet. Kolaczyk and Csárdi (2014) reviewed statistical models for network graphs such

as exponential random graph models and network block models. Zhang et al. (2020)

considered a network-based logistic regression model to describe the network effect.

In this article, we propose a new statistical model for networks in the same spirit as

Kolaczyk and Csárdi (2014) and Zhang et al. (2020). Moreover, we derive conditions

for selecting optimal designs and illustrate our theory through simulations and real

examples.
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1. Introduction

In the 21st century, with the rapid development of the Internet, it has been more

common for people to meet a group of friends with common interests in virtual worlds

such as Facebook, Twitter, or Instagram. Some people set up online shopping compa-

nies, making it easier for people to have different shopping options. These interpersonal

relationships and user behaviors can be described through social networks and recom-

mendation networks. In practice, examples of network structures are ubiquitous, such

as in agricultural experiments, bioinformatics, medical experiments, machine learning,

physics, social sciences, and many other scientific fields.

Most of the literature on networks focuses on modeling, parameter estimation, pre-

diction and inference, but rarely discusses designing experiments. Moreover, many sta-

tistical theories for designing experiments have assumed that the experimental units are

uncorrelated. Recently, some related works have been proposed. In the field of experi-

mental design, the nodes in networks represent experimental units. The edges represent

the connections between experimental units. If two experimental units (nodes) are con-

nected, one is called a neighbor of the other. Besides, a treatment affects both the unit

to which it is applied and the neighbors of that unit. These effects are called treat-

ment effects and network effects, respectively. Parker, Gilmour, and Schormans (2017)

and Chang, Phoa, and Huang (2021) both adopted a linear network effect model to

design experiments with unstructured treatments on general undirected networks. The

difference is that Parker, Gilmour, and Schormans (2017) regarded the network effects

as fixed effects, while Chang, Phoa, and Huang (2021) modeled them as random effects.

However, this model has not been heavily recognized yet. Therefore, we are devoted to

proposing a new statistical model for networks in this article, which incorporates the

concept of the network literature. Additionally, we discuss design issues under the new

model.

The rest of this article is organized as follows. In Section 2, we review the literature

of some popular network modeling methods as well as the experiments with network

structures. In Section 3, we set up a novel statistical model, illustrate the optimality

criterion, and present some results of theoretical conditions for optimal designs. In
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Section 4, numerical examples for specific graphs and their real applications are given,

such as bipartite graphs, path graphs, and cycle graphs. Three real networks are

investigated in Section 5. At last, some concluding remarks are given in Section 6.

2. Literature Review
In the last century, researchers in different fields have been enthusiastic about

network studies, so the literature about networks has been burgeoning. In the field

of statistics, exponential random graph models (ERGMs) are one of the most popular

network modeling methods. ERGMs are similar to generalized linear models, while

ERGMs use many metrics, such as the degree, density, and centrality, to describe the

structural features of a network.

ERGMs were first proposed by Holland and Leinhardt (1981) and further devel-

oped by Frank and Strauss (1986). Meanwhile, Frank and Strauss (1986) proposed

Markov random graph models, which was the mainstay of ERGMs. However, the

Markov random graph model had been rarely adopted by researchers until Wasserman

and Pattison (1996) extended it to p∗ models, which became the ERGMs applied for so-

cial networks. The log-linear form of the p∗ models facilitated extensions of the original

basic framework, resulting in models for different types of data, such as multivariate

network data ( Wasserman and Pattison, 1999 ), valued network data ( Robins, Pat-

tison, and Wasserman, 1999 ), and bipartite network data ( Skvoretz and Faust, 1999

).

Nowadays, ERGMs have become a powerful network modeling method and have

been widely explored. Social selection ( Robins, Elliott, and Pattison, 2001a ) and social

influence ( Robins, Pattison, and Elliott, 2001b ) models considered actor attributes in

their models. Snijders (2002) offered a numerical method for estimating the parameters

of the ERGM using the Markov chain Monte Carlo (MCMC) methods, such as the

Gibbs sampling and the Metropolis-Hastings sampling. Almquist and Butts (2014)

showed how to extend a logistic network regression approach to serve as a framework

for modeling large networks with dynamic vertex sets. Jiao et al. (2017) used ERGMs

to analyze the subjective well-being of teenagers under peer relationship networks and

to draw the conclusion that there exist positive reciprocal effects, positive transitivity
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effects, and negative expansiveness effects.

In addition to ERGMs, network block models are also a type of popular network

modelings with many applications. When the nodes are divided into subgroups based

on their attributes, the density of ties from one subgroup to another could be quite

different. It means that the graph contains communities, which are characterized by

interconnected subsets with specific edge densities. For example, edges within commu-

nities may have a higher probability to be connected than those between communities.

Thus, the notion of “blocking”appeared in social networks.

The first simple block model was proposed by Fienberg and Wasserman (1981).

Wang and Wong (1987) modified it and then proposed a p1 block model involving the

nodal attributes as well as the individual nodes. Nowicki and Snijders (2001) initiated

a statistical approach to a posteriori block modeling for digraphs and valued digraphs.

They assumed that the probability distribution of the relation between two nodes only

depends on the latent classes to which they belong and the relations are conditionally

independent on these classes. Karrer and Newman (2011) demonstrated how to gener-

alize the block model when missing elements exist, in order to improve the objective

function for community detections. Kolaczyk and Csárdi (2014) provided an extensive

review to different statistical analyses of network data (e.g., visualization, network mod-

eling, static and dynamic network process, and so on), in use of the R programming

language ( R Core Team, 2020 ).

Different from the two network modeling methods mentioned above, which regard

the edges of the network as responses, Zhang et al. (2020) initiated a network-based

logistic regression (NLR) model. They mainly focused on how to bring the network

structure into a traditional classification problem, i.e., the class label instead of the

edges is the response. The NLR model assumed that whether two nodes are connected

is affected by their responses and their similarity in predictors. Furthermore, attributes

of each node were also used to predict class labels through the classical logistic regression

model.

As mentioned above, the majority of literature about networks has focused on

parameter estimation, prediction, and inference, while few discussed design experimen-

tation. Moreover, most statistical theories for randomized experiments have assumed
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that experimental units are uncorrelated. Besag and Kempton (1986) described that

the response of a plot is affected by the particular treatments on neighboring plots and

discussed four distinct agricultural experimental applications. Druilhet (1999) investi-

gated the optimality of circular neighbor-balanced block designs. They considered both

neighbor (i.e., network) effects and treatment effects in the model.

Recently, Parker, Gilmour, and Schormans (2017) have initiated a new approach,

using As-optimality, to design network experiments. They considered unstructured

treatments and experimental units with a general network structure. They pointed

out that the assumption of treatment effect additivity no longer holds because of the

existence of network effects. Therefore, they proposed a linear network effect model in

which both treatment effects and network effects were regarded as fixed effects.

Chang, Phoa, and Huang (2021) investigated a similar design problem to Parker,

Gilmour, and Schormans (2017), but they assumed that network effects were random

variables. They pointed out that when one experimental unit is transmitting an effect

to another, this effect is possible to be perturbed by unknown noises. Besides, they pro-

vided theoretical conditions for efficiently estimating treatment effects and accurately

predicting network effects. Therefore, they believed using stochastic mechanisms to

model network effects is a reasonable choice even if the treatments are specified in

advance.

We notice that in network modeling, the linear network effect model has been sel-

dom applied and recognized yet. Therefore, we combine the concept of the NLR ( Zhang

et al., 2020 ) and network block models in Kolaczyk and Csárdi (2014) into the design

experimentation problem. As noted, the research of networks is important and benefi-

cial to many fields, while existing research in experimental design paid little attention

to general network structures. Hence, we are committed to designing experiments on

networks and proposing a more appropriate statistical model.

3. Methodology

3.1 Model
Consider a network G = (V,E), a collection of nodes V and edges E ⊆ (V × V).
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The nodes represent experimental units to which some treatments are applied. The

edges represent the relationships between the units. Suppose we have |V| = N units

and m treatments. We assume that each unit receives exactly one treatment. Let

U = (U1, . . . , UN )T be an N ×m unit-treatment incidence matrix with [U]ij = 1 if the

ith node receives the jth treatment and zero otherwise. In each row of U, i.e., UT
i ,

there is exactly one non-zero element.

Let Y = (y1, . . . , yN )T ∈ RN be the vector of responses, where yi is the response of

the ith node. Given the network and U, the relationship between the treatments and

the responses is modeled by

Y = Uα+ ε, (1)

where α = (α1, . . . , αm)T is the m-dimensional vector of treatment effects and the

error term ε is normally distributed with zero mean and covariance matrix σ2IN . We

assume the treatment effects α to be unknown constants. In addition to the treatment

effects, we assume that there exist network effects due to the relationship between

units, where their responses are correlated and depend on the treatments applied to

them. To describe the network structure, the relationship between units is represented

by an N × N adjacency matrix A where [A]ik = 1 if and only if unit i and unit k

are connected, and zero otherwise. Following the convention, we set [A]ii = 0. For

simplicity, we assume that edges are undirected. Therefore, A is a symmetric matrix,

i.e., [A]ik = [A]ki.

Following Zhang et al. (2020), we express our network effects similar to the random

graph logistic model, where the probability of a connection between pairs of vertices

depends on their treatments, i.e., [A]ijs are random variables. In practical applications,

the network structure is observed from the data; each [A]ij is fixed at zero or one. Our

model assumes that whether two nodes are connected is influenced by their similarity

in treatments as well as the overall treatment-connection pattern of the network.

Let Lt(i)t(j) be the number of observed edges in the network connecting pairs of

vertices with treatment t(i) and t(j), where t(i) and t(j) are the treatments applied to

unit i and unit j, and Lt(i)t(j) = Lt(j)t(i). Given U, we assume the edges are independent
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random variables, i.e., [A]ijs are independent, such that

P ([A]ij = 1|Ui, Uj) =
exp(sij + ϕLt(i)t(j))

1 + exp(sij + ϕLt(i)t(j))
≡ πij , (2)

where sij = UT
i Uj represents the similarity of the ith node and the jth node according

to their predictors and ϕ indicates the strength of blocks on the link probability. The

sij in the model describes the local patterns of the network because it only considers

the similarity of treatments between two nodes. On the other hand, the Lt(i)t(j) reflects

the global patterns of the network. We note that
∑m

i≤j Lt(i)t(j) is equal to the number

of edges of an observed network.

The equation (2) implicitly assumes that receiving the same treatment, i.e., sij = 1,

would result in a higher probability of connection. Similarly, when ϕ is positive, larger

Lt(i)t(j) will lead to a higher connection probability. By contrast, when ϕ is negative,

larger Lt(i)t(j) will have the opposite results. As ϕ approaches zero, the influence of

Lt(i)t(j) is getting small; that is, the connection probabilities are only determined by

the local patterns of the network.

Our statistical model combines (1) and (2). Let θ = (αT , σ, ϕ)T . We assume the

marginal distribution of [A]ij is irrelevant to θ, so the likelihood of θ conditioned on A

is proportional to

L(θ) = P (Y,A|U) = P (Y|U)P (A|U)

=

N∏
i=1

P (yi|Ui)

N∏
i ̸=j

P ([A]ij |Ui, Uj)

=

N∏
i=1

1√
2πσ2

exp
[
− 1

2σ2

(
yi − UT

i α
)2] N∏

i ̸=j

π
[A]ij
ij (1− πij)

1−[A]ij .

3.2 Optimality Criterion

In this study, we strive for finding a design that can efficiently estimate θ under the

D-optimality ( Kiefer and Wolfowitz, 1960 ), which is to maximize the determinant of

the Fisher information matrix of θ. We begin with the log-likelihood of the parameters
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θ:

ℓ(θ) =− N

2
log(2πσ2)− 1

2σ2

N∑
i=1

(
yi − UT

i α
)2

+
N∑
i=1

∑
j ̸=i

[
[A]ij logπij + (1− [A]ij) log(1− πij)

]
.

Then we derive the Fisher information matrix. Note that [A]ij are observed when the

data is obtained. We plug in the observed [A]ij in the computation of the information

matrix. Therefore, the resulting information matrix is given as below:

J(θ) = −E
[
∇2ℓ(θ)

]

= −E



∂2ℓ(θ)
∂α2

1

∂2ℓ(θ)
∂α1∂α2

· · · ∂2ℓ(θ)
∂α1∂ϕ

∂2ℓ(θ)
∂α2∂α1

∂2ℓ(θ)
∂α2

2
· · · ∂2ℓ(θ)

∂α2∂ϕ

...
... . . . ...

∂2ℓ(θ)
∂ϕ∂α1

∂2ℓ(θ)
∂ϕ∂α2

· · · ∂2ℓ(θ)
∂ϕ2



=



n1
σ2 0 · · · 0 0 0

0 n2
σ2

. . . 0 0 0

...
... . . . ... 0 0

0 0 · · · nm
σ2 0 0

0 0 0 0 2N
σ2 0

0 0 0 0 0
∑N

i=1

∑
j ̸=i L

2
t(i)t(j)πij(1− πij)


,

where ni is the number of the experimental units which receive the ith treatments

(
∑m

i=1 ni = N). Thus, we have

det(J(θ)) =
(

m∏
i=1

ni

σ2

)
× 2N

σ2
×

 N∑
i=1

∑
j ̸=i

L2
t(i)t(j)πij(1− πij)



=
2N

σ2m+2

m∏
i=1

ni

 N∑
i=1

∑
j ̸=i

L2
t(i)t(j)πij(1− πij)


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=
2N

σ2m+2

m∏
i=1

ni

 N∑
i=1

∑
j ̸=i

L2
t(i)t(j)

exp(sij + ϕLt(i)t(j))[
1 + exp(sij + ϕLt(i)t(j))

]2


=
2N

σ2m+2
I1(θ; n)I2(θ),

where n = (n1, . . . , nm),

I1(θ; n) =
m∏
i=1

ni,

and

I2(θ) =
N∑
i=1

∑
j ̸=i

L2
t(i)t(j)

exp(sij + ϕLt(i)t(j))[
1 + exp(sij + ϕLt(i)t(j))

]2 .
A constraint on ni is that ni > 0; that is, every treatment must be assigned to at least

one unit; otherwise det(J(θ)) = 0. Since the graph has been observed, we can estimate

ϕ by the maximum likelihood estimation. The likelihood equation of ϕ is given below:

∂ℓ(θ)

∂ϕ
=

N∑
i=1

∑
j ̸=i

Lt(i)t(j)

(
[A]ij −

exp(sij + ϕLt(i)t(j))

1 + exp(sij + ϕLt(i)t(j))

)
= 0.

In general, I2(θ) =
∑N

i=1

∑
j ̸=i L

2
t(i)t(j)πij(1 − πij) is not easily manageable since ϕ̂

depends on different designs.

We consider maximizing det(J(θ)) into two steps: maximizing I1(θ; n) and maxi-

mizing I2(θ). Let f(n) = I1(θ; n) =
∏m

i=1 ni. We show that f(n) is Schur-concave by

using the Schur-Ostrowski criterion ( Ostrowski, 1952 ) as below:

(ni − nj)

(
∂f

ni
− ∂f

nj

)
= (ni − nj)

m∏
p ̸=i,j

np (nj − ni)

= − (ni − nj)
2

m∏
p ̸=i,j

np ≤ 0

for all n ∈ Rm holds for all 1 ≤ i ̸= j ≤ m. Based on the theory of majorization,

a function f : Rm → R is Schur-concave if for any two vectors na and nb, we have

f(na) ≤ f(nb) given that na majorizes nb. This indicates the components of n should

spread more evenly to get a large f(n). Consequently, we conclude that to maximize

I1(θ; n), one needs to evenly spread the components of n, i.e., nis should be as equal

as possible, resulting in a (nearly) balanced design.
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With regard to I2(θ), we derive the conditions according to the number of treat-

ments, m = 2 and m > 2:

(1) m = 2: we classify πij into
(
m
1

)
+
(
m
2

)
= 3 groups, denoted by pkl, where k =

min (t(i), t(j)) and l = max (t(i), t(j)). Then the determinant det(J(θ)) is

2N

σ6
n1n2 · 2

 2∑
k=1

(
nk
2

)
L2
kk

exp(1 + ϕ̂Lkk)[
1 + exp(1 + ϕ̂Lkk)

]2 + n1n2L
2
12

exp(ϕ̂L12)[
1 + exp(ϕ̂L12)

]2


=
4N

σ6
n1n2

[
2∑

k=1

(
nk
2

)
L2
kkpkk + n1n2L

2
12p12

]

∝ I1(θ; n)I2(θ),

where

I1(θ; n) = n1n2,

and

I2(θ) =
2∑

k=1

(
nk
2

)
L2
kkpkk + n1n2L

2
12p12.

As previously noted, I2(θ) is not easily tractable due to the estimation of ϕ. We

discuss a simplified case with ϕ approaching zero in order to establish sufficient

conditions for optimal designs. In addition, we examine whether these conditions

hold for the general case where ϕ is estimated from the data. As ϕ approaches

zero, the determinant is

lim
ϕ→0

det(J(θ)) ∝ lim
ϕ→0

I1(θ; n)I2(θ)

= n1n2

{(
n1

2

)
L2
11p11 +

(
n2

2

)
L2
22p22 + n1n2L

2
12p12

}
= n1n2

{
exp(1)

[1 + exp(1)]2
[(

n1

2

)
L2
11 +

(
n2

2

)
L2
22

]
+

1

4
n1n2L

2
12

}
.

We have the following results:

(i) Consider how to spread L11 and L22 to make I2(θ) large given n1 and n2.
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We compare

(L11, L22, L12) =

(
c, c,

1

2
tr(ATA)− 2c

)
(3)

and

(L11, L22, L12) =

(
c+ a, c− a,

1

2
tr(ATA)− 2c

)
, (4)

where a = −c,−(c − 1), . . . ,−1, 1, . . . , c − 1, c and c = 0, 1, . . . , 14 tr(ATA).

Substracting I2(θ) of (4) from that of (3) yields

exp(1)
[1 + exp(1)]2

[(
n1

2

)
c2 +

(
n2

2

)
c2 −

(
n1

2

)
(c+ a)2 −

(
n2

2

)
(c− a)2

]
. (5)

The condition that (5) is larger than zero is equivalent to

−a2
[(

n1

2

)
+
(
n2

2

)]
+ 2ac

[(
n2

2

)
−
(
n1

2

)]
= −z

(
a− cy

z

)2
+

c2y2

x
≥ 0,

where y =
(
n2

2

)
−
(
n1

2

)
and z =

(
n1

2

)
+
(
n2

2

)
. Finally, we have∣∣∣cy

z

∣∣∣+ cy

z
≥ a ≥ −

∣∣∣cy
z

∣∣∣+ cy

z
.

Hence, evenly spreading L11 and L22 leads to large I2(θ) when the following

is satisfied: {
a ∈ (2cyz , 0) , if y < 0 , i.e. n1 > n2;

a ∈ (0, 2cyz ) , if y ≥ 0 , i.e. n1 ≤ n2.

We conclude that given n1, n2, without calculating I2(θ), as long as the

design satisfies the above condition, it would result in a larger I2(θ).

(ii) Consider how to spread L11 and L12 to make I2(θ) large given n1 and n2.

We compare

(L11, L22, L12) =

(
c,
1

2
tr(ATA)− c, 0

)
(6)

and

(L11, L22, L12) =

(
c− a,

1

2
tr(ATA)− c, a

)
, (7)

where a = 1, 2, . . . , c and c = 1, 2, . . . , 12 tr(ATA). Substracting I2(θ) of (7)
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from that of (6) yields

exp(1)
[1 + exp(1)]2

[(
n1

2

)
c2 −

(
n1

2

)
(c− a)2

]
− 1

4
n1n2a

2. (8)

The condition that (8) is larger than zero is equivalent to

−y

(
a− z

y

)2

+
z2

y
≥ 0,

where

y =
exp(1)

[1 + exp(1)]2
(
n1

2

)
+

1

4
n1n2

and

z =
c exp(1)

[1 + exp(1)]2
(
n1

2

)
.

Finally, we have

2z

y
≥ a ≥ 0.

Hence, largest L11 leads to large I2(θ) when it satisfies

2z

y
≥ a ≥ 0.

We conclude that given n1, n2, without calculating I2(θ), as long as the

design satisfies the above condition, largest L11 would result in a larger

I2(θ).

(2) m > 2: the determinant det(J(θ)) is proportional to

m∏
i=1

ni

 m∑
k=1

(
nk
2

)
L2
kk

exp(1 + ϕ̂Lkk)[
1 + exp(1 + ϕ̂Lkk)

]2 +

m−1∑
i=1

m∑
j>i

ninjL
2
ij

exp(ϕ̂Lij)[
1 + exp(ϕ̂Lij)

]2


=
m∏
i=1

ni

 m∑
k=1

(
nk
2

)
L2
kkpkk +

m−1∑
i=1

m∑
j>i

ninjL
2
ijpij

 = I1(θ; n)I2(θ),

where

I1(θ; n) =
m∏
i=1

ni,
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and

I2(θ) =
m∑
k=1

(
nk
2

)
L2
kkpkk +

m−1∑
i=1

m∑
j>i

ninjL
2
ijpij .

Similarily, we discuss a case where ϕ approaches zero. As ϕ approaches zero,

pkk = exp(1)
[1+exp(1)]2 and pij =

1
4 . We have

lim
ϕ→0

det(J(θ)) ∝
m∏
i=1

ni

 exp(1)
[1 + exp(1)]2

m∑
k=1

(
nk
2

)
L2
kk +

1

4

m−1∑
i=1

m∑
j>i

ninjL
2
ij

 .

We have the following results:

(i) Consider how to spread Lkks to make I2(θ) largest given nis. First, we

consider

(L11, L22, . . . , Lmm) =

(
c1, c2, . . . ,

1

2
tr(ATA)−

m−1∑
i=1

ci − a

)

given Lijs and
∑m−1

i=1

∑m
j>i Lij = a. Then comparing I2(θ) can be simplified

to only comparing

m∑
k=1

(
nk
2

)
L2
kk. (9)

Let g(Lkk) =
(
nk
2

)
L2
kk. The g(Lkk) is a convex function defined on a real

interval since g′′(Lkk) = 2
(
nk
2

)
≥ 0. By the theory of majorization, (9) is

Schur-convex, and (9) reaches a maximum when Lkk attains the maximum,

where nk = max(n1, . . . , nm). For example, if n1 is the largest among nis,

then (L11, L22, . . . , Lmm) =
(
1
2 tr(ATA)− a, 0, . . . , 0

)
makes I2(θ) largest.

(ii) Consider how to spread Lijs to make I2(θ) largest given nis. First, we

consider

(L12, L13, . . . , Lm−1,m) =

c12, c13, . . . ,
1

2
tr(ATA)−

m−1∑
i=1

m∑
j>i

cij − a


given Lkks and

∑m
k=1 Lkk = a. Then comparing I2(θ) can be simplified to
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only comparing

m−1∑
i=1

m∑
j>i

ninjL
2
ij . (10)

Let g(Lij) = ninjL
2
ij . Then g(Lij) is a convex function defined on a real

interval since g′′(Lij) = 2ninj ≥ 0. By the theory of majorization, (10) is

Schur-convex, and (10) reaches a maximum when Lij attains the maximum,

where ninj = max(n1n2, . . . , nm−1nm). For example, if n1 and n2 are the

first two largest among nis, then (L12, L13, . . . , Lm−1m) =
(
1
2 tr(ATA)− a, 0,

. . . , 0) makes I2(θ) largest.

We summarize the results above in a theroem as follows.

Theorem 1. Given det(J(θ)) = I1(θ; n)I2(θ), to maximize I1(θ; n), the treatments

should be evenly spread; that is, nis should be as equal as possible, resulting in a (nearly)

balanced design. With respect to maximizing I2(θ), we provide two conditions:

(i) Given nis, Lijs (i ̸= j) and
∑m−1

i=1

∑m
j>i Lij being fixed, I2(θ) reaches a maximum

when Lkk attains the maximum with k = {1 ≤ l ≤ m : nl = max(n1, n2, . . . , nm)}.

(ii) Given nis, Lkks and
∑m

k=1 Lkk being fixed, I2(θ) reaches a maximum when Lij

attains the maximum with (i, j) = {1 ≤ l < s ≤ m : nlns = max(n1n2, n1n3,

. . . , nm−1nm)}.

Calculating det(J(θ)) for all designs can be prohibitive. Theorem 1 provides a set

of sufficient conditions for a design to be D-optimal. The computational cost of these

conditions is much lower than computing the determinant of J(θ). The numerical study

in Section 4 shows that the designs satisfying these conditions tend to perform well.

4. Numerical Results with Real Applications
For an N -node graph and m treatments, there are mN designs in total. For a small

network, we can completely search for all designs and calculate the values of the design

criteria. However, exhaustive search incurs a large computational cost. It becomes

prohibitive for a large-scale network or numerous treatments. Parker, Gilmour, and
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Figure 1: Network Structure for a Singles Mixer.

Schormans (2017) mentioned that we can reduce the size of the search area in two

ways: the symmetry of the labels and the symmetry in the graph. Hence, we use these

two techniques to reduce computation. In the following, we provide the results for

m = 2, while those for m = 3 are given in the appendix. For each given network, the

Lt(i)t(j)s can be computed once a treatment allocation is assigned.

4.1 m = 2 with ϕ → 0

In Section 3.2, we derive theoretical results for m = 2 as ϕ approaches zero. Here,

we examine numerical results by four types of graphs: complete bipartite graph, cycle

graph, path graph, and the second example in Parker, Gilmour, and Schormans (2017)

(also in Chang, Phoa, and Huang (2021)). Except for the last graph, we also provide

real applications.

Scenario 1. Complete Bipartite Graph

A complete bipartite graph is a special case of bipartite graphs where each unit in

the first subset is connected to those in the other subset.

For instance, when people participate in the singles mixer, they will receive a list of

basic contact information of the opposite gender from the marriage service corporation,

including the name, occupation, horoscope, and blood type. The contact information

will be exchanged between members according to their own wishes. Hence, these partic-

ipants constitute a social network, which has a complete bipartite structure; see Figure

1. If the marriage service corporation wants to distribute advertisements for their so-

cial activities to those who are willing to socialize, the issue of treatment assignment
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Figure 2: Complete Bipartite Graph with N = 8.

Table 1: Nonisomorphic Designs for Scenario 1 as ϕ → 0.

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2} 0 16 0 0 2818.63 0.00

{1,2,2,2,2,2,2,2} 0 12 4 7 1245.11 8715.76

{1,1,2,2,2,2,2,2} 0 8 8 12 761.50 9137.94

{1,2,2,2,1,2,2,2} 1 9 6 12 694.16 8329.92

{1,1,2,2,1,2,2,2} 2 6 8 15 626.28 9394.19

{1,1,1,2,2,2,2,2} 0 4 12 15 1142.92 17143.74

{1,1,1,1,2,2,2,2} 0 0 16 16 2048.00 32768.00

{1,1,2,2,1,1,2,2} 4 4 8 16 587.50 9399.98

{1,1,1,2,1,2,2,2} 3 3 10 16 842.47 13479.49

matters. The treatments can be different kinds of advertisements, and the response

can be the number of clicks on the advertisement page.

We illustrate this scenario via a simple example with eight units as in Figure 2.

Let {t(1), . . . , t(N)} be the set of treatments on units 1 to N . We find nine non-

isomorphic designs shown in Table 1. The blue one corresponds to the largest I2(θ),

but it does not involve the first treatment. The red one corresponds to the D-optimal

design. The design with the largest L12 is D-optimal, which is supported by Theorem

1.

Scenario 2. Cycle Graph

A cycle graph is a graph that the vertices are connected in a closed chain, and the

number of vertices equals the number of edges. All vertices have the degree two; that
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Figure 3: The Floor Plan of National Palace Museum.

Figure 4: The Floor Plan of Tainan City Zuojhen Fossil Park.

is, every vertex has exactly two edges linked with it.

The floor plan of the museum can be realized as a cycle network. The museum

attaches great importance to the layout of works to make the best use of storage space

and allow visitors to enjoy the works as comfortably and completely as possible. Take

National Palace Museum and Tainan City Zuojhen Fossil Park as examples. See Figure

3 and Figure 4 for illustration. They use a forced-route design to guide customers to

travel the entire predetermined route. If people come here to see exhibitions, they will

follow the same route most of the time. From a commercial point of view, the museum

tries to solve the following problems: how to decide the position of the works or theme

introductions in the route, so as to promote the activities to the maximum extent?
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Figure 5: Cycle Graph with N = 8.

Table 2: Nonisomorphic Designs for Scenario 2 as ϕ → 0.

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2} 0 8 0 0 704.66 0.00

{1,2,2,2,2,2,2,2} 0 6 2 7 311.28 2178.94

{1,1,2,2,2,2,2,2} 1 5 2 12 171.85 2062.23

{1,2,1,2,2,2,2,2} 0 4 4 12 190.37 2284.49

{1,1,1,2,2,2,2,2} 2 4 2 15 97.64 1464.52

{1,1,2,1,2,2,2,2} 1 3 4 15 156.57 2348.55

{1,2,1,2,1,2,2,2} 0 2 6 15 285.73 4285.93

{1,1,1,1,2,2,2,2} 3 3 2 16 74.47 1191.49

{1,1,1,2,1,2,2,2} 2 2 4 16 146.88 2350.00

{1,1,2,1,2,1,2,2} 1 1 6 16 292.72 4683.50

{1,2,1,2,1,2,1,2} 0 0 8 16 512.00 8192.00

The number of views by the customers can be used as a response. We regard each

work/type of showroom as a node and connect adjacent works/showrooms based on a

one-way path layout. We define the area in front of the entrance and exit as the same

node, so this path is a cycle graph.

In this scenario, we illustrate a simple example with eight units as in Figure 5. We

have eleven nonisomorphic designs shown in Table 2. The result is similar to that of

Scenario 1. The design with the largest L12 is D-optimal, supported by Theorem 1.
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(a)

(b)

Figure 6: The Floor Plans of IKEA.

Scenario 3. Path Graph

A path graph is a walk with all different units and edges. The difference between

path graphs and cycle graphs is that the first unit is connected with the last unit in

cycle graphs.

As we mentioned in the previous scenario, the layout of facilities plays an impor-

tant role in operations for exhibitions. It also works for shopping malls, which may

affect customer purchases. Traditional retail stores usually allow customers to navigate

directly to any part, but some stores like IKEA use a path to guide customers to every

area in the store; see Figure 6. IKEA’s layout is a one-way path system that guides

customers from the entrance to the checkout area through different parts. Suppose

we have two posters about recruiting new members with two-dimensional QR codes

attached, and each part of the store has one of them. The store owner may want to

decide the placement of two different posters effectively and explore which version of

the poster is more attractive.
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Figure 7: Path Graph with N = 8.

Table 3: Nonisomorphic Designs for Scenario 3 as ϕ → 0.

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2} 0 7 0 0 539.50 0.00

{1,2,2,2,2,2,2,2} 6 0 1 7 300.78 2105.44

{2,1,2,2,2,2,2,2} 5 0 2 7 220.44 1543.10

{1,2,2,2,2,2,2,1} 0 5 2 12 171.46 2057.51

{1,1,2,2,2,2,2,2} 1 5 1 12 153.85 1846.23

{2,1,2,1,2,2,2,2} 0 3 4 12 149.09 1789.02

{1,2,1,2,2,2,2,2} 0 4 3 12 148.37 1780.49

{2,1,1,2,2,2,2,2} 1 4 2 12 118.77 1425.20

{2,1,2,1,2,1,2,2} 0 1 6 15 273.93 4108.98

{1,2,1,2,1,2,2,2} 0 2 5 15 203.23 3048.98

{1,2,1,2,2,2,2,1} 0 3 4 15 155.39 2330.85

{2,1,1,2,1,2,2,2} 1 2 4 15 136.91 2053.63

{1,1,2,1,2,2,2,2} 1 3 3 15 104.07 1561.05

{1,1,2,2,2,2,2,1} 1 4 2 15 94.10 1411.43

{1,1,1,2,2,2,2,2} 2 4 1 15 75.14 1127.02

{2,1,1,1,2,2,2,2} 2 3 2 15 70.11 1051.63

{1,2,1,2,1,2,1,2} 0 0 7 16 392.00 6762.00

{2,1,1,2,1,2,1,2} 1 0 6 16 290.36 4645.75

{1,1,2,1,2,1,2,2} 1 1 5 16 204.72 3275.50

{2,1,1,1,2,1,2,2} 2 1 4 16 139.80 2236.75

{1,1,1,2,1,2,2,2} 2 2 3 16 90.88 1454.08

{2,1,1,1,1,2,2,2} 3 2 2 16 62.67 1002.74

{1,1,1,1,2,2,2,2} 3 3 1 16 50.47 807.49
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Similarly, we illustrate a path graph with eight units as in Figure 7. We have

twenty-three nonisomorphic designs shown in Table 3. The D-optimal design has the

largest L12, supported by Theorem 1.

Scenario 4. Example 2 in Parker, Gilmour, and Schormans

(2017)

The graph in Figure 8 is an example discussed in Parker, Gilmour, and Schormans

(2017). This network has ten units connected by a relationship with the following

adjacency matrix:

A =



0 0 0 0 1 0 0 1 0 1

0 0 1 1 0 0 1 1 1 1

0 1 0 1 0 0 1 0 1 0

0 1 1 0 0 1 1 1 1 1

1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0

0 1 1 1 0 1 0 0 0 1

1 1 0 1 0 0 0 0 0 1

0 1 1 1 1 0 0 0 0 1

1 1 0 1 0 0 1 1 1 0



.

On account of the unsymmetry in the graph, we choose not to show all nonisomor-

phic designs in Table 4. We list the designs whose I2(θ) are larger than that of the

D-optimal design. In Table 4, we observe the same results as the previous scenarios. On

the other hand, we compare the results with Parker, Gilmour, and Schormans (2017)

and Chang, Phoa, and Huang (2021). See Table 5 for details. With respect to the

criterion we propose, the design chosen in this article is better.

4.2 m = 2 with estimated ϕ

In this section, ϕ is estimated by the maximum likelihood estimation. It leads

to different pkl and determinants for different designs. Through simulating the same

scenarios as in Section 4.1, different results happen from those under ϕ approaching

zero.
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Figure 8: Example 2 in Parker, Gilmour, and Schormans (2017).

Table 4: Optimal Designs for Scenario 4 as ϕ → 0.

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2,2,2} 0 22 0 0 8564.42 0.00

{2,2,2,2,2,1,2,2,2,2} 0 20 2 9 5680.42 51123.81

{2,2,2,2,1,2,2,2,2,2} 0 20 2 9 5680.42 51123.81

{1,2,2,2,2,2,2,2,2,2} 0 19 3 9 5150.84 46357.54

{2,2,2,2,2,2,2,1,2,2} 0 18 4 9 4658.56 41927.07

{2,2,1,2,2,2,2,2,2,2} 0 18 4 9 4658.56 41927.07

{2,2,2,2,2,2,2,2,1,2} 0 17 5 9 4203.60 37832.41

{2,2,2,2,2,2,1,2,2,2} 0 17 5 9 4203.60 37832.41

{2,2,2,2,2,2,2,2,2,1} 0 16 6 9 3785.95 34073.56

{2,1,2,2,2,2,2,2,2,2} 0 16 6 9 3785.95 34073.56

{2,2,2,1,2,2,2,2,2,2} 0 15 7 9 3405.61 30650.52

{2,2,2,2,1,1,2,2,2,2} 0 18 4 16 3695.33 59125.23

{1,2,2,2,1,2,2,2,2,2} 1 18 3 16 3639.72 58235.52

{1,2,2,2,2,1,2,2,2,2} 0 17 5 16 3381.97 54111.48

{2,2,1,2,1,1,2,1,2,1} 1 5 16 25 3302.24 82555.96
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Table 5: Comparison in Optimal Designs for Scenario 4 as ϕ → 0.

This article

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,1,2,1,1,2,1,2,1} 1 5 16 25 3302.24 82555.96

Parker, Gilmour, and Schormans (2017)

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{1,1,2,2,2,1,2,1,2,1} 5 6 11 25 1752.37 43809.16

{1,2,1,2,1,2,2,1,2,1} 4 7 11 25 1768.10 44202.39

Chang, Phoa, and Huang (2021)

Treatment assignment L11 L22 L12 I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,1,2,2,1,2,2,1,1,1} 6 5 11 25 1752.37 43809.16

{2,1,2,2,2,1,1,1,2,1} 6 5 11 25 1752.37 43809.16

Scenario 1. Complete Bipartite Graph

For the scenario of the complete bipartite graph, we show the nonisomorphic designs

in Table 6. The red one represents the optimal design in Section 4.1. The orange one

represents the optimal design for estimated ϕ. The range of ϕ̂ is from −0.055 to 1.223.

We find that the optimal design under ϕ approaching zero is the worst in this condition;

since ϕ̂ = 1.223 causes p12 = 1, the determinant is zero.

Scenario 2. Cycle Graph

In this case, we present the results in Table 7. The range of ϕ̂ is from −0.505 to 0.

The optimal design in Section 4.1 is also optimal here.

Scenario 3. Path Graph

In this scenario, we present the 23 nonisomorphic designs in Table 8. The range of

ϕ̂ is from −0.649 to −0.036. Similar to Scenario 2, the optimal design for ϕ approaching

zero is also optimal for estimated ϕ.
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Table 6: Nonisomorphic Designs for Scenario 1 under ϕ̂ = MLE.

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,2,2,2,2,2,2} 0 16 0 −0.045 0.571 0.731 0.500

{1,2,2,2,2,2,2,2} 0 12 4 −0.055 0.731 0.585 0.446

{1,1,2,2,2,2,2,2} 0 8 8 −0.020 0.731 0.699 0.460

{1,2,2,2,1,2,2,2} 1 9 6 −0.047 0.722 0.640 0.429

{1,1,2,2,1,2,2,2} 2 6 8 −0.014 0.726 0.715 0.473

{1,1,1,2,2,2,2,2} 0 4 12 0.076 0.731 0.787 0.714

{1,1,1,1,2,2,2,2} 0 0 16 1.223 0.731 0.731 1.000

{1,1,2,2,1,1,2,2} 4 4 8 −0.011 0.723 0.723 0.479

{1,1,1,2,1,2,2,2} 3 3 10 0.028 0.747 0.747 0.569

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2} 0 3510.86 0.00

{1,2,2,2,2,2,2,2} 7 1523.32 10662.56

{1,1,2,2,2,2,2,2} 12 785.89 9430.62

{1,2,2,2,1,2,2,2} 12 722.19 9266.55

{1,1,2,2,1,2,2,2} 15 630.15 9452.29

{1,1,1,2,2,2,2,2} 15 935.73 14035.98

{1,1,1,1,2,2,2,2} 16 0.00 0.00

{1,1,2,2,1,1,2,2} 16 588.05 9408.79

{1,1,1,2,1,2,2,2} 16 825.40 13206.36
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Table 7: Nonisomorphic Designs for Scenario 2 under ϕ̂ = MLE.

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,2,2,2,2,2,2} 0 8 0 −0.240 0.286 0.731 0.500

{1,2,2,2,2,2,2,2} 0 6 2 −0.325 0.731 0.279 0.343

{1,1,2,2,2,2,2,2} 1 5 2 −0.380 0.650 0.289 0.319

{1,2,1,2,2,2,2,2} 0 4 4 −0.368 0.731 0.384 0.187

{1,1,1,2,2,2,2,2} 2 4 2 −0.455 0.523 0.306 0.287

{1,1,2,1,2,2,2,2} 1 3 4 −0.392 0.648 0.456 0.173

{1,2,1,2,1,2,2,2} 0 2 6 −0.145 0.731 0.670 0.295

{1,1,1,1,2,2,2,2} 3 3 2 −0.505 0.374 0.374 0.267

{1,1,1,2,1,2,2,2} 2 2 4 −0.399 0.550 0.550 0.169

{1,1,2,1,2,1,2,2} 1 1 6 −0.135 0.704 0.704 0.308

{1,2,1,2,1,2,1,2} 0 0 8 0.000 0.731 0.731 0.500

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2} 0 731.43 0.00

{1,2,2,2,2,2,2,2} 7 317.00 2218.98

{1,1,2,2,2,2,2,2} 12 175.51 2106.17

{1,2,1,2,2,2,2,2} 12 171.83 2061.95

{1,1,1,2,2,2,2,2} 15 98.53 1478.00

{1,1,2,1,2,2,2,2} 15 114.62 1719.31

{1,2,1,2,1,2,2,2} 15 242.49 3637.32

{1,1,1,1,2,2,2,2} 16 75.61 1209.74

{1,1,1,2,1,2,2,2} 16 95.53 1528.44

{1,1,2,1,2,1,2,2} 16 250.48 4007.67

{1,2,1,2,1,2,1,2} 16 512.00 8192.00
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Table 8: Nonisomorphic Designs for Scenario 3 under ϕ̂ = MLE.

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,2,2,2,2,2,2} 0 7 0 −0.300 0.250 0.731 0.500

{1,2,2,2,2,2,2,2} 6 0 1 −0.332 0.270 0.731 0.418

{2,1,2,2,2,2,2,2} 5 0 2 −0.434 0.237 0.731 0.296

{1,2,2,2,2,2,2,1} 0 5 2 −0.384 0.731 0.285 0.317

{1,1,2,2,2,2,2,2} 1 5 1 −0.383 0.286 0.650 0.406

{2,1,2,1,2,2,2,2} 0 3 4 −0.457 0.408 0.731 0.138

{1,2,1,2,2,2,2,2} 0 4 3 −0.465 0.297 0.731 0.199

{2,1,1,2,2,2,2,2} 1 4 2 −0.540 0.238 0.613 0.253

{2,1,2,1,2,1,2,2} 0 1 6 −0.116 0.708 0.731 0.332

{1,2,1,2,1,2,2,2} 0 2 5 −0.252 0.621 0.731 0.221

{1,2,1,2,2,2,2,1} 0 3 4 −0.375 0.731 0.469 0.182

{2,1,1,2,1,2,2,2} 1 2 4 −0.448 0.526 0.635 0.143

{1,1,2,1,2,2,2,2} 1 3 3 −0.560 0.337 0.608 0.157

{1,1,2,2,2,2,2,1} 1 4 2 −0.493 0.624 0.274 0.272

{1,1,1,2,2,2,2,2} 2 4 1 −0.460 0.302 0.520 0.387

{2,1,1,1,2,2,2,2} 2 3 2 −0.661 0.272 0.420 0.210

{1,2,1,2,1,2,1,2} 0 0 7 −0.036 0.731 0.731 0.438

{2,1,1,2,1,2,1,2} 1 0 6 −0.110 0.731 0.709 0.341

{1,1,2,1,2,1,2,2} 1 1 5 −0.236 0.682 0.682 0.235

{2,1,1,1,2,1,2,2} 2 1 4 −0.405 0.644 0.547 0.165

{1,1,1,2,1,2,2,2} 2 2 3 −0.621 0.440 0.440 0.134

{2,1,1,1,1,2,2,2} 3 2 2 −0.649 0.426 0.279 0.214

{1,1,1,1,2,2,2,2} 3 3 1 −0.522 0.362 0.362 0.372
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Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,2,2,2} 0 514.50 0.00

{1,2,2,2,2,2,2,2} 7 301.73 2112.10

{2,1,2,2,2,2,2,2} 7 201.41 1409.86

{1,2,2,2,2,2,2,1} 12 173.69 2084.25

{1,1,2,2,2,2,2,2} 12 159.54 1914.48

{2,1,2,1,2,2,2,2} 12 110.98 1331.75

{1,2,1,2,2,2,2,2} 12 134.70 1616.37

{2,1,1,2,2,2,2,2} 12 105.80 1269.54

{2,1,2,1,2,1,2,2} 15 243.83 3657.49

{1,2,1,2,1,2,2,2} 15 147.91 2218.66

{1,2,1,2,2,2,2,1} 15 116.39 1745.77

{2,1,1,2,1,2,2,2} 15 80.13 1201.98

{1,1,2,1,2,2,2,2} 15 77.41 1161.13

{1,1,2,2,2,2,2,1} 15 88.87 1333.06

{1,1,1,2,2,2,2,2} 15 80.54 1208.10

{2,1,1,1,2,2,2,2} 15 61.45 921.68

{1,2,1,2,1,2,1,2} 16 385.88 6174.00

{2,1,1,2,1,2,1,2} 16 261.39 4182.27

{1,1,2,1,2,1,2,2} 16 149.09 2385.47

{2,1,1,1,2,1,2,2} 16 85.22 1363.45

{1,1,1,2,1,2,2,2} 16 57.14 914.18

{2,1,1,1,1,2,2,2} 16 55.04 880.60

{1,1,1,1,2,2,2,2} 16 57.38 918.10



28 W.-H. CHEN AND M.-C. CHANG

Table 9: Optimal Designs for Scenario 4 under ϕ̂ = MLE.

Treatment assignment L11 L22 L12 ϕ̂

{2,2,2,2,2,2,2,2,2,2} 0 22 0 −0.047

{2,2,2,2,2,1,2,2,2,2} 0 20 2 −0.040

{1,2,2,2,2,2,2,2,2,2} 0 19 3 −0.048

{2,2,2,2,2,2,2,1,2,2}; {2,2,1,2,2,2,2,2,2,2} 0 18 4 −0.056

{2,2,2,2,2,2,2,2,1,2}; {2,2,2,2,2,2,1,2,2,2} 0 17 5 −0.063

{2,2,2,2,2,2,2,2,2,1}; {2,1,2,2,2,2,2,2,2,2} 0 16 6 −0.070

{2,2,2,1,2,2,2,2,2,2} 0 15 7 −0.076

{2,2,2,2,1,1,2,2,2,2} 0 18 4 −0.030

{1,2,2,2,1,2,2,2,2,2} 1 18 3 −0.029

{1,2,2,2,2,1,2,2,2,2} 0 17 5 −0.039

{2,2,2,2,2,1,2,1,2,2}; {2,2,2,2,1,2,2,1,2,2};
0 16 6 −0.047

{2,2,1,2,2,1,2,2,2,2}; {2,2,1,2,1,2,2,2,2,2}

{2,2,2,2,1,2,2,2,1,2}; {1,2,2,2,2,2,2,1,2,2};
1 16 5 −0.050

{2,2,2,2,2,1,1,2,2,2}

{2,2,2,2,1,2,2,2,1,2}; {2,2,2,2,1,2,1,2,2,2};
0 15 7 −0.055

{1,2,1,2,2,2,2,2,2,2}

{2,2,2,2,2,1,2,2,2,1}; {2,2,2,2,1,2,2,2,2,1};

0 14 8 −0.060
{1,2,2,2,2,2,2,2,1,2}; {2,2,1,2,2,2,2,1,2,2};

{1,2,2,2,2,2,1,2,2,2}; {2,1,2,2,2,1,2,2,2,2};

{2,1,2,2,1,2,2,2,2,2}

{2,1,1,2,1,1,2,2,2,1} 2 4 16 0.020

{2,2,1,2,1,1,2,1,2,1} 1 5 16 0.023
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Treatment assignment p11 p22 p12

{2,2,2,2,2,2,2,2,2,2} 0.731 0.489 0.500

{2,2,2,2,2,1,2,2,2,2} 0.731 0.549 0.480

{1,2,2,2,2,2,2,2,2,2} 0.731 0.523 0.464

{2,2,2,2,2,2,2,1,2,2}; {2,2,1,2,2,2,2,2,2,2} 0.731 0.500 0.445

{2,2,2,2,2,2,2,2,1,2}; {2,2,2,2,2,2,1,2,2,2} 0.731 0.482 0.422

{2,2,2,2,2,2,2,2,2,1}; {2,1,2,2,2,2,2,2,2,2} 0.731 0.470 0.396

{2,2,2,1,2,2,2,2,2,2} 0.731 0.464 0.37

{2,2,2,2,1,1,2,2,2,2} 0.731 0.615 0.470

{1,2,2,2,1,2,2,2,2,2} 0.725 0.616 0.478

{1,2,2,2,2,1,2,2,2,2} 0.731 0.584 0.451

{2,2,2,2,2,1,2,1,2,2}; {2,2,2,2,1,2,2,1,2,2};
0.731 0.560 0.429

{2,2,1,2,2,1,2,2,2,2}; {2,2,1,2,1,2,2,2,2,2}

{2,2,2,2,1,2,2,2,1,2}; {1,2,2,2,2,2,2,1,2,2};
0.721 0.550 0.438

{2,2,2,2,2,1,1,2,2,2}

{2,2,2,2,1,2,2,2,1,2}; {2,2,2,2,1,2,1,2,2,2};
0.731 0.544 0.405

{1,2,1,2,2,2,2,2,2,2}

{2,2,2,2,2,1,2,2,2,1}; {2,2,2,2,1,2,2,2,2,1};

0.731 0.539 0.382
{1,2,2,2,2,2,2,2,1,2}; {2,2,1,2,2,2,2,1,2,2};

{1,2,2,2,2,2,1,2,2,2}; {2,1,2,2,2,1,2,2,2,2};

{2,1,2,2,1,2,2,2,2,2}

{2,1,1,2,1,1,2,2,2,1} 0.746 0.739 0.578

{2,2,1,2,1,1,2,1,2,1} 0.736 0.753 0.592
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Treatment assignment I1 I2 I1I2
{2,2,2,2,2,2,2,2,2,2} 0 10884.62 0.00

{2,2,2,2,2,1,2,2,2,2} 9 7148.50 64336.53

{1,2,2,2,2,2,2,2,2,2} 9 6525.00 58725.00

{2,2,2,2,2,2,2,1,2,2}; {2,2,1,2,2,2,2,2,2,2} 9 5903.12 53128.06

{2,2,2,2,2,2,2,2,1,2}; {2,2,2,2,2,2,1,2,2,2} 9 5305.05 47745.45

{2,2,2,2,2,2,2,2,2,1}; {2,1,2,2,2,2,2,2,2,2} 9 4746.21 42715.93

{2,2,2,1,2,2,2,2,2,2} 9 4234.85 38113.66

{2,2,2,2,1,1,2,2,2,2} 16 4424.18 70786.84

{1,2,2,2,1,2,2,2,2,2} 16 4365.22 69843.55

{1,2,2,2,2,1,2,2,2,2} 16 4130.52 66088.27

{2,2,2,2,2,1,2,1,2,2}; {2,2,2,2,1,2,2,1,2,2};
16 3814.97 61039.48

{2,2,1,2,2,1,2,2,2,2}; {2,2,1,2,1,2,2,2,2,2}

{2,2,2,2,1,2,2,2,1,2}; {1,2,2,2,2,2,2,1,2,2};
16 3745.92 59934.74

{2,2,2,2,2,1,1,2,2,2}

{2,2,2,2,1,2,2,2,1,2}; {2,2,2,2,1,2,1,2,2,2};
16 3503.17 56050.69

{1,2,1,2,2,2,2,2,2,2}

{2,2,2,2,2,1,2,2,2,1}; {2,2,2,2,1,2,2,2,2,1};

16 3210.87 51373.85
{1,2,2,2,2,2,2,2,1,2}; {2,2,1,2,2,2,2,1,2,2};

{1,2,2,2,2,2,1,2,2,2}; {2,1,2,2,2,1,2,2,2,2};

{2,1,2,2,1,2,2,2,2,2}

{2,1,1,2,1,1,2,2,2,1} 25 3197.29 79932.20

{2,2,1,2,1,1,2,1,2,1} 25 3187.42 79685.50

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).
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Table 10: Comparison in Optimal Designs for Scenario 4 under ϕ̂ = MLE.

This article

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,1,2,1,1,2,1,2,1} 1 5 16 0.023 0.736 0.753 0.592

Parker, Gilmour, and Schormans (2017)

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{1,1,2,2,2,1,2,1,2,1} 5 6 11 −0.041 0.689 0.680 0.388

{1,2,1,2,1,2,2,1,2,1} 4 7 11 −0.036 0.702 0.678 0.402

Chang, Phoa, and Huang (2021)

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,1,2,2,1,2,2,1,1,1} 6 5 11 −0.041 0.689 0.680 0.388

{2,1,2,2,2,1,1,1,2,1} 6 5 11 −0.041 0.689 0.680 0.388

This article

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,1,2,1,1,2,1,2,1} 25 3187.42 79685.50

Parker, Gilmour, and Schormans (2017)

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{1,1,2,2,2,1,2,1,2,1} 25 1701.04 42526.00

{1,2,1,2,1,2,2,1,2,1} 25 1734.77 43369.27

Chang, Phoa, and Huang (2021)

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,1,2,2,1,2,2,1,1,1} 25 1701.04 42526.00

{2,1,2,2,2,1,1,1,2,1} 25 1701.04 42526.00
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Scenario 4. Example 2 in Parker, Gilmour, and Schormans

(2017)

In this case, the optimal design in Section 4.1 is not optimal here; see Table 9.

However, we observe that via complete search, its determinant is very close to that

of the optimal design. Likewise, we compare the results with Parker, Gilmour, and

Schormans (2017) and Chang, Phoa, and Huang (2021) in Table 10. The design chosen

in this article is better.

From the four scenarios we discussed, we know that the conclusion in Section 4.1

might be not applicable when ϕ is estimated by the MLE.

5. Real Networks

The real networks are from https://sites.google.com/site/ucinetsoftwa

re/datasets. They are datasets in UCINET software Borgatti, Everett, and Free-

man(2002). In this section, we apply our theory to real networks and give the corre-

sponding optimal designs.

5.1 Teenage Friends and Lifestyle Study

This social network data were collected in the Teenage Friends and Lifestyle Study.

Friendship networks and substance use were recorded for a group of students in a school

in the West of Scotland. The data were recorded for three years, starting in 1995 and

ending in 1997. A total of 160 students took part in the study. The friendship networks

were formed by allowing the students to name twelve best friends.

Schools might be interested in the influence of different interventions for promoting

a healthy life among a group of students that knew each other socially, according to

their friendship network structure. Some students might be sent daily text messages

about healthy eating information, and the others might be sent a weekly magazine

of the disadvantage of consuming tobacco, alcohol and cannabis. In addition to the

effectiveness of the interventions, researchers were also interested in whether the mes-

sage/magazine sent to one student had an effect on other students that connected with

the original student in the social network. The treatment could be different daily text

https://sites.google.com/site/ucinetsoftware/datasets
https://sites.google.com/site/ucinetsoftware/datasets
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Figure 9: A Subset of the Friendship Network in a School in the West of Scotland.

messages about healthy eating information or weekly magazines of the disadvantage

of consuming tobacco, alcohol and cannabis. The response could be sale volumes of

tobacco, alcohol and cannabis.

The network shown in Figure 9 is a subset of the data. It has twelve units and

twenty edges connected as the following adjacency matrix:

A =



0 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 1 1 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 1 1 0 0

0 1 1 1 1 0 1 1 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 1 0



.

We assume there are two different daily texts. Then we present the optimal designs

in Table 11. The design with the largest L12 is D-optimal when ϕ approaches zero.

However, when ϕ is estimated by the MLE, the optimal design is another one.
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Table 11: Optimal Designs for Real Network 1 as ϕ → 0 and ϕ̂ = MLE.

ϕ → 0

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,1,2,1,1,2,2,1,2,2,1,1} 2 3 15 0.00 0.731 0.731 0.500

{1,2,1,2,2,2,1,2,1,1,2,1} 3 2 15 0.00 0.731 0.731 0.500

{2,1,2,1,1,1,2,1,2,2,2,1} 2 3 15 0.00 0.731 0.731 0.500

ϕ̂ = MLE

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,2,2,2,1,2,2,2,2,1,1} 3 17 0 −0.06 0.691 0.477 0.5

ϕ → 0

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,1,2,1,1,2,2,1,2,2,1,1} 36 4126.68 148560.43

{1,2,1,2,2,2,1,2,1,1,2,1} 36 4126.68 148560.43

{2,1,2,1,1,1,2,1,2,2,2,1} 36 4126.68 148560.43

ϕ̂ = MLE

Treatment assignment I1(θ; n) I2(θ) I1(θ; n)I2(θ)
{2,2,2,2,2,1,2,2,2,2,1,1} 27 5202.28 140461.58

5.2 Friendship and Unionization in a Hi-tech Firm

The case is a small hi-tech computer firm that sells, installs, and maintains com-

puter systems. The network contains the friendship ties between the employees, which

were gathered by means of the question: Who do you consider to be a personal friend?

A few months later, employees tried to organize a union in the firm: they sought sup-

port among the employees to let the union have a say in the firm. According to the

friendship network structure, organizers want to know which slogan is more attractive

to their colleagues to join the union. The subjects might be sent proposals about join-

ing the union with different slogans. The response could be the number of clicks on
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Figure 10: A Subset of the Friendship Nework in a Hi-tech Computer Firm.

proposal links.

The network shown in Figure 10 is a subset of the data, with thirteen nodes and

thirty-eight edges connected as the following adjacency matrix:

A =



0 1 0 1 1 0 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0 1 1 0 0 1

0 0 0 0 1 0 1 0 1 1 1 1 0

1 1 0 0 0 0 1 0 0 1 0 0 0

1 0 1 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 0 1 0 1

0 1 1 1 0 0 0 1 1 1 1 1 0

0 0 0 0 0 1 1 0 1 1 0 0 0

0 1 1 0 0 1 1 1 0 1 1 1 0

1 1 1 1 1 0 1 1 1 0 1 1 0

0 0 1 0 1 1 1 0 1 1 0 1 1

0 0 1 0 1 0 1 0 1 1 1 0 0

0 1 0 0 0 1 0 0 0 0 1 0 0



.

We assume there are proposals about joining the union with two different slogans.

Then we have the optimal designs under ϕ approaching zero and under ϕ estimated by

the MLE in Table 12. The optimal designs are the same, which have the largest L12.
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Table 12: Optimal Designs for Real Network 2 as ϕ → 0 and ϕ̂ = MLE.

ϕ → 0

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,2,1,1,1,1,2,1,1,2,2,1} 8 4 26 0.00 0.731 0.731 0.500

{1,2,2,2,1,1,1,2,1,1,2,2,1} 8 4 26 0.00 0.731 0.731 0.500

ϕ̂ = MLE

Treatment assignment L11 L22 L12 ϕ̂ p11 p22 p12

{2,2,2,1,1,1,1,2,1,1,2,2,1} 8 4 26 0.01 0.740 0.736 0.538

{1,2,2,2,1,1,1,2,1,1,2,2,1} 8 4 26 0.01 0.740 0.736 0.538

ϕ → 0

Treatment assignment I1 I2 I1I2
{2,2,2,1,1,1,1,2,1,1,2,2,1} 42 14818.87 622392.40

{1,2,2,2,1,1,1,2,1,1,2,2,1} 42 14818.87 622392.40

ϕ̂ = MLE

Treatment assignment I1 I2 I1I2
{2,2,2,1,1,1,1,2,1,1,2,2,1} 42 14724.23 618417.77

{1,2,2,2,1,1,1,2,1,1,2,2,1} 42 14724.23 618417.77

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

5.3 Discussion of Student Government

This network contains discussion relations among the eleven students who were

members of the student government at the University of Ljubljana in Slovenia. The

students were asked to point out with whom of their fellows they discussed matters

concerning the administration of the university informally. Within the parliament, stu-

dents have positions that convey official ranking: the prime minister, the ministers,

and the advisors. The student government is responsible for legislating and supervis-

ing various administrative affairs of student associations, such as funding. A student
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Figure 11: The Student Government Discussion Network.

wants to make the student government willing to provide more funds through distinct

proposals. The treatments could be distinct proposals. The response could be funds.

The network shown in Figure 11 has eleven units and thirty-six edges connected

as the following adjacency matrix:

A =



0 1 1 0 0 1 0 0 0 1 0

1 0 1 1 1 1 0 1 1 1 0

1 1 0 1 1 1 1 1 1 1 0

0 1 1 0 1 1 1 1 0 0 1

0 1 1 1 0 1 1 1 0 1 0

1 1 1 1 1 0 1 1 0 0 1

0 0 1 1 1 1 0 1 1 0 1

0 1 1 1 1 1 1 0 1 0 1

0 1 1 0 0 0 1 1 0 0 1

1 1 1 0 1 0 0 0 0 0 0

0 0 0 1 0 1 1 1 1 0 0



.

We assume a student provides three different activity proposals. Then we present

the optimal designs in Table 13. Similar to the previous examples, the design with

the largest L12 is D-optimal under the condition that ϕ approaches zero. However, the

optimal design is not suitable for the condition that ϕ is estimated by the MLE.
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Table 13: Optimal Designs for Real Network 3 as ϕ → 0 and ϕ̂ = MLE.

ϕ → 0

Treatment assignment L11 L22 L33 L12 L13 L23 ϕ̂

{3,1,1,2,1,2,1,2,2,2,1} 6 4 0 22 2 2 0.00

ϕ̂ = MLE

Treatment assignment L11 L22 L33 L12 L13 L23 ϕ̂

{3,2,1,2,1,1,2,2,1,2,1} 6 6 0 20 2 2 0.05

{3,1,1,2,1,2,2,2,1,2,1} 6 6 0 20 2 2 0.05

{3,3,1,3,1,1,3,3,1,2,1} 6 0 6 2 20 2 0.05

ϕ → 0

Treatment assignment p11 p22 p33 p12 p13 p23 I1 I2 I1I2
{3,1,1,2,1,2,1,2,2,2,1} 0.73 0.73 0.73 0.50 0.50 0.50 25 6274 156862

ϕ̂ = MLE

Treatment assignment p11 p22 p33 p12 p13 p23 I1 I2 I1I2
{3,2,1,2,1,1,2,2,1,2,1} 0.79 0.79 0.73 0.75 0.53 0.53 25 4017 100415

{3,1,1,2,1,2,2,2,1,2,1} 0.79 0.79 0.73 0.75 0.53 0.53 25 4017 100415

{3,3,1,3,1,1,3,3,1,2,1} 0.79 0.73 0.79 0.53 0.75 0.53 25 4017 100415

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

6. Conclusion
This article studies optimal designs for experimental units with general network

structures. Different from the linear network effect model proposed by Parker, Gilmour,

and Schormans (2017) and Chang, Phoa, and Huang (2021), we propose a novel statis-

tical network-based model, more easily justified by the network literature. Our model

is an extension of network block models and NLR models, and incorporates the local

and global patterns of a network. We derive a theoretical result under the condition

ϕ approaching zero, and provide sufficient conditions for optimal designs. In the nu-
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merical study, we consider common classes of graphs, such as bipartite, path, and cycle

networks, and a network in Parker, Gilmour, and Schormans (2017) and Chang, Phoa,

and Huang (2021). By the comparison in the numerical study, we find that the optimal

design under ϕ approaching zero might not be the same as that under ϕ estimated by

the maximum likelihood estimation. This shows that the global patterns of a network

play a role in determining optimal designs. Lastly, we discuss three real-world net-

works and show that our methods are not only applicable for specific graphs, but also

for general networks.

Studying optimal designs under ϕ estimated by the maximum likelihood estimation

is a challenging task. In addition, deriving a powerful testing method for the hypothesis

H0 : ϕ = 0 is crucial since Theorem 1 is derived under ϕ approaching zero. As pointed

out by a reviewer, we realize that the equation in (2) may not be able to mathematically

characterize the connection probabilities for a few nodes in very small-scale graphs. We

leave the above problems for future research.

Appendix

A.1. m = 3 with ϕ → 0

In Section 4.1, we have derived numerical results by four types of graphs under

m = 2. Here, we examine the numerical results for m = 3. When m = 3 and ϕ → 0,

p11 = p22 = p33 = 0.731 and p12 = p13 = p23 = 0.5.

Scenario 1. Complete Bipartite Graph

We illustrate the scenario of the complete bipartite graph via an example with

twelve units as in Figure 12. We show the top three designs in Table 14. The red one

represents the optimal design. The design with the largest L12 is D-optimal.

Scenario 2. Cycle Graph

We illustrate this scenario via an example with eleven units as in Figure 13. We

have the top three designs in Table 15. The design with the largest L23, one of Lij , is

D-optimal.
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Figure 12: Complete Bipartite Graph with N=12.

Figure 13: Cycle Graph with N=11.

Table 14: Selected Designs for Scenario 1 as ϕ → 0 and m = 3.

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2 I1I2
{3,2,2,2,2,2,1,1,1,1,1,1} 0 0 0 30 6 0 30 13608 408240

{3,3,3,3,3,2,2,1,1,1,1,1} 0 1 0 5 25 5 50 8063 403145

{3,3,2,2,2,2,1,1,1,1,1,1} 0 0 0 24 12 0 48 7776 373248

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

Table 15: Selected Designs for Scenario 2 as ϕ → 0 and m = 3.

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2 I1I2
{2,3,2,3,2,3,2,3,2,1,1} 1 0 0 2 0 8 40 660 26416

{3,2,1,2,1,2,1,2,1,2,1} 0 0 0 9 1 1 25 1018 25438

{3,1,3,2,1,2,1,2,1,2,1} 0 0 0 7 3 1 40 539 21560

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).
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Figure 14: Path Graph with N=9.

Table 16: Selected Designs for Scenario 3 as ϕ → 0 and m = 3.

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2 I1I2
{3,2,1,2,1,2,1,2,1} 0 0 0 7 1 1 16 396 6336

{2,3,2,3,2,3,2,1,1} 1 0 0 2 0 6 24 232 5577

{2,3,2,1,2,1,2,1,1} 1 0 0 6 0 2 16 298 4774

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

Scenario 3. Path Graph

We illustrate a path graph with nine units as in Figure 14. We have the top three

designs in Table 16. The design with the largest L12 is D-optimal.

Scenario 4. Example 2 in Parker, Gilmour, and Schormans

(2017)

Similar to Section 4, the unsymmetry in the graph leads to numerous nonisomorphic

designs. Hence, we only compare the results with Chang, Phoa, and Huang (2021); see

Table 17. With respect to the criterion we propose, the design chosen in this article is

better. The D-optimal design has the largest L12.
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Table 17: Comparison in Optimal Designs for Scenario 4 as ϕ → 0 and m = 3.

This article

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2 I1I2
{3,1,1,2,3,1,2,2,2,1} 2 3 1 13 1 2 32 1403 44898

Chang, Phoa, and Huang (2021)

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2 I1I2
{1,2,3,3,2,3,1,1,2,1} 4 2 2 5 5 4 36 419 15091

{1,2,3,1,2,3,3,1,2,3} 2 2 3 4 6 5 36 469 16872

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

A.2. m = 3 with estimated ϕ

In this section, we show the numerical results for the condition that ϕ is estimated

by the MLE and m = 3. Therefore, it results in different pkl and the determinants

given different designs.

Scenario 1. Complete Bipartite Graph

For the scenario of the complete bipartite graph, we show the optimal design in

Section A.1 and the top two designs in Table 18. The red one represents the optimal

design in Section A.1. The orange one represents the optimal design for ϕ estimated by

the MLE. The range of ϕ̂ is from −0.05 to 2.93. We find that the optimal design when

ϕ approaches zero is the worst in this condition; since ϕ̂ = 2.93 causes p12 = p13 = 1,

the determinant is zero. This consequence is similar when m = 2.

Scenario 2. Cycle Graph

In this case, we show the top three designs in Table 19. The range of ϕ̂ is from −0.88

to −0.03. The optimal design in Section A.1 is also D-optimal here. This consequence

is also similar when m = 2.

Scenario 3. Path Graph

In this scenario, we present the top three designs in Table 20. The range of ϕ̂ is

from −0.78 to −0.03. The D-optimal design is the same as that in Section A.1.
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Table 18: Selected Designs for Scenario 1 under ϕ̂ = MLE and m = 3.

Treatment assignment L11 L22 L33 L12 L13 L23 ϕ̂

{3,2,2,2,2,2,1,1,1,1,1,1} 0 0 0 30 6 0 2.93

{3,2,2,2,2,1,2,1,1,1,1,1} 5 4 0 21 5 1 0.03

{3,2,2,2,2,1,3,2,1,1,1,1} 4 4 1 17 5 5 0.02

Treatment assignment p11 p22 p33 p12 p13 p23 I1 I2 I1I2
{3,2,2,2,2,2,1,1,1,1,1,1} 0.73 0.73 0.73 1.00 1.00 0.50 30 0 0

{3,2,2,2,2,1,2,1,1,1,1,1} 0.76 0.75 0.73 0.63 0.53 0.51 30 6438 193134

{3,2,2,2,2,1,3,2,1,1,1,1} 0.75 0.75 0.74 0.60 0.53 0.53 50 3845 192244

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

Table 19: Selected Designs for Scenario 2 under ϕ̂ = MLE and m = 3.

Treatment assignment L11 L22 L33 L12 L13 L23 ϕ̂

{2,3,2,3,2,3,2,3,2,1,1} 1 0 0 2 0 8 −0.07

{3,2,1,2,1,2,1,2,1,2,1} 0 0 0 9 1 1 −0.08

{3,1,3,2,1,2,1,2,1,2,1} 0 0 0 7 3 1 −0.12

Treatment assignment p11 p22 p33 p12 p13 p23 I1 I2 I1I2
{2,3,2,3,2,3,2,3,2,1,1} 0.72 0.73 0.73 0.47 0.50 0.37 40 616 24641

{3,2,1,2,1,2,1,2,1,2,1} 0.73 0.73 0.73 0.33 0.48 0.48 25 899 22481

{3,1,3,2,1,2,1,2,1,2,1} 0.73 0.73 0.73 0.30 0.41 0.47 40 458 18334

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).
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Table 20: Selected Designs for Scenario 2 under ϕ̂ = MLE and m = 3.

Treatment assignment L11 L22 L33 L12 L13 L23 ϕ̂

{3,2,1,2,1,2,1,2,1} 0 0 0 7 1 1 −0.07

{2,3,2,3,2,3,2,1,1} 1 0 0 2 0 6 −0.03

{3,1,3,2,1,2,1,2,1} 0 0 0 5 3 1 −0.12

Treatment assignment p11 p22 p33 p12 p13 p23 I1 I2 I1I2
{3,2,1,2,1,2,1,2,1} 0.73 0.73 0.73 0.38 0.48 0.48 16 372 5944

{2,3,2,3,2,3,2,1,1} 0.72 0.73 0.73 0.48 0.50 0.45 24 230 5529

{3,1,3,2,1,2,1,2,1} 0.73 0.73 0.73 0.36 0.41 0.47 24 176 4225

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).

Table 21: Comparison in Optimal Designs for Scenario 4 under ϕ̂ =MLE and m = 3.

This article

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2

{2,1,1,1,1,3,2,2,2,1}
5 1 0 14 1 1 20 2065

p11 p22 p33 p12 p13 p23 ϕ̂ I1I2
0.73 0.73 0.73 0.50 0.50 0.50 0.00 41306

Chang, Phoa, and Huang (2021)

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2

{1,2,3,3,2,3,1,1,2,1}
4 2 2 5 5 4 36 414

p11 p22 p33 p12 p13 p23 ϕ̂ I1I2
0.67 0.70 0.70 0.42 0.42 0.43 −0.07 14913

Treatment assignment L11 L22 L33 L12 L13 L23 I1 I2

{1,2,3,1,2,3,3,1,2,3}
2 2 3 4 6 5 36 462

p11 p22 p33 p12 p13 p23 ϕ̂ I1I2
0.71 0.71 0.69 0.45 0.42 0.44 −0.05 16646

Note. I1 = I1(θ; n), I2 = I2(θ), and I1I2 = I1(θ; n)I2(θ).
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Scenario 4. Example 2 in Parker, Gilmour, and Schormans

(2017)

In this example, the optimal design in Section A.1 is not optimal here. See Table

21 for details. Likewise, we compare the results with Chang, Phoa, and Huang (2021)

in Table 21. The design chosen in this article is better.

From the four scenarios we discussed, we derive a similar conclusion in Section 4.

Only the second scenario and the third scenario have the same optimal designs for two

conditions. That is, the results for ϕ approaching zero may be not applicable to ϕ

estimated by the MLE.
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網路效應模型在無向網路結構之最佳設計

陳玟秀 1,2 張明中 1,2†
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摘 要

在生活中，具有網路結構的例子無所不在，例如在農業實驗、生物信息學、醫學

實驗、機器學習、物理學、社會科學和許多其他科學領域，再加上社交網路的快速發

展，網路相關的議題已經成為一個新興的研究領域。為一個實驗單位指派處理會影

響該實驗單位及其鄰居，並同時產生了處理效應和網路效應。在實驗設計的文獻中，

Parker, Gilmour, and Schormans (2017) 和 Chang, Phoa, and Huang (2021) 都採用了

線性網路效應模型來處理網路實驗。然而，這種模型並未得到廣泛應用。Kolaczyk 

and Csárdi (2014) 回顧了網路的統計模型，例如指數隨機圖模型和網路區塊模型。 

Zhang et al. (2020) 考慮了一種基於網路的邏輯斯迴歸模型來描述網路效應。本文擴

展 Kolaczyk and Csárdi (2014) 以及 Zhang et al. (2019) 的想法提出了一種新的網路

統計模型，並尋找最佳設計的條件。最後，我們通過模擬和真實例子來說明我們的理

論且提供相對應的最佳設計。

關鍵詞: 社交網路、處理效應、網路效應、網路建模、二分圖/循環圖/路徑圖、D 最

佳化準則。

JEL classification: C90.

†通訊作者: 張明中
E-mail: mcchang@stat.sinica.edu.tw
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